mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2025-05-27 20:02:28 -04:00
The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
__ __ ______ _____ ________ __ __ | \ _ | \ / \ | \| \ | \ | \ | $$ / \ | $$| $$$$$$\ \$$$$$ \$$$$$$$$ | $$ | $$ | $$/ $\| $$| $$___\$$ | $$ | $$ ______ \$$\/ $$ | $$ $$$\ $$ \$$ \ __ | $$ | $$| \ >$$ $$ | $$ $$\$$\$$ _\$$$$$$\| \ | $$ | $$ \$$$$$$/ $$$$\ | $$$$ \$$$$| \__| $$| $$__| $$ | $$ | $$ \$$\ | $$$ \$$$ \$$ $$ \$$ $$ | $$ | $$ | $$ \$$ \$$ \$$$$$$ \$$$$$$ \$$ \$$ \$$ Copyright (C) 2001 - 2015 by Joe Taylor, K1JT. WSJT-X is a computer program designed to facilitate basic amateur radio communication using very weak signals. The first four letters in the program name stand for “Weak Signal communication by K1JT,” while the suffix “-X” indicates that WSJT-X started as an extended (and experimental) branch of the program WSJT. WSJT-X Version 1.6 offers five protocols or “modes”: JT4, JT9, JT65 WSPR, and Echo. The first three are designed for making reliable QSOs under extreme weak-signal conditions. They use nearly identical message structure and source encoding. JT65 was designed for EME (“moonbounce”) on the VHF/UHF bands and has also proven very effective for worldwide QRP communication on the HF bands. JT9 is optimized for the LF, MF, and lower HF bands. It is 2 dB more sensitive than JT65 while using less than 10% of the bandwidth. JT4 offers a wide variety of tone spacings and has proved very effective for EME on microwave bands up to 24 GHz. All three of these modes use one-minute timed sequences of alternating transmission and reception, so a minimal QSO takes four to six minutes — two or three transmissions by each station, one sending in odd UTC minutes and the other even. On the HF bands, world-wide QSOs are possible using power levels of a few watts and compromise antennas. On VHF bands and higher, QSOs are possible (by EME and other propagation types) at signal levels 10 to 15 dB below those required for CW. WSPR (pronounced “whisper”) stands for Weak Signal Propagation Reporter. The WSPR protocol was designed for probing potential propagation paths using low-power transmissions. WSPR messages normally carry the transmitting station’s callsign, grid locator, and transmitter power in dBm, and they can be decoded at signal-to-noise ratios as low as -28 dB in a 2500 Hz bandwidth. WSPR users with internet access can automatically upload their reception reports to a central database called {wsprnet} that provides a mapping facility, archival storage, and many other features. Echo mode allows you to detect and measure your own lunar echoes, even if they are far below the audible threshold. WSJT-X provides spectral displays for passbands up to 5 kHz, flexible rig control for nearly all modern radios used by amateurs, and a wide variety of special aids such as automatic Doppler tracking for EME QSOs and Echo testing. The program runs equally well on Windows, Macintosh, and Linux systems, and installation packages are available for all three platforms. WSJT-X is an open-source project released under the GPL license (See COPYING). If you have programming or documentation skills or would like to contribute to the project in other ways, please make your interests known to the development team. The project’s source-code repository can be found at https://sourceforge.net/projects/wsjt, and most communication among the developers takes place on the email reflector https://sourceforge.net/p/wsjt/mailman. User-level questions and answers, and general communication among users is found on the https://groups.yahoo.com/neo/groups/wsjtgroup/info email reflector. Project web site: http://www.physics.princeton.edu/pulsar/K1JT/wsjtx.html Project mailing list (shared with other applications from the same team): https://groups.yahoo.com/neo/groups/wsjtgroup
Description
This a mirror of WSJT-X and will be updated every 6 hours. PR will be ignored, head to the SF link. Repo will be updated at 06:00:00 UTC 12:00:00 UTC 18:00:00 UTC 00:00:00 UTC Now fixed.
Languages
C++
52.4%
Fortran
19.5%
Python
18.8%
C
7.6%
CMake
1.3%
Other
0.1%