WSJT-X/lib/fsk4hf/osd300.f90
Steven Franke a2447fe344 More work on osd decoder.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@7671 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2017-05-11 22:55:31 +00:00

141 lines
3.7 KiB
Fortran

subroutine osd300(llr,norder,decoded,niterations,cw)
!
! An ordered-statistics decoder based on ideas from:
! "Soft-decision decoding of linear block codes based on ordered statistics,"
! by Marc P. C. Fossorier and Shu Lin,
! IEEE Trans Inf Theory, Vol 41, No 5, Sep 1995
!
include "ldpc_300_60_params.f90"
integer*1 gen(K,N)
integer*1 genmrb(K,N)
integer*1 temp(K),m0(K),me(0:K)
integer indices(N)
integer*1 codeword(N),cw(N),hdec(N)
integer*1 decoded(K)
integer indx(N)
real llr(N),rx(N),absrx(N)
logical first
data first/.true./
save first,gen
if( first ) then ! fill the generator matrix
gen=0
do i=1,M
do j=1,15
read(g(i)(j:j),"(Z1)") istr
do jj=1, 4
irow=(j-1)*4+jj
if( btest(istr,4-jj) ) gen(irow,i)=1
enddo
enddo
enddo
do irow=1,K
gen(irow,M+irow)=1
enddo
first=.false.
endif
! re-order received vector to place systematic msg bits at the end
rx=llr(colorder+1)
! hard decode the received word
hdec=0
where(rx .ge. 0) hdec=1
! use magnitude of received symbols as a measure of reliability.
absrx=abs(rx)
call indexx(absrx,N,indx)
! re-order the columns of the generator matrix in order of decreasing reliability.
do i=1,N
genmrb(1:K,i)=gen(1:K,indx(N+1-i))
indices(i)=indx(N+1-i)
enddo
! do gaussian elimination to create a generator matrix with the most reliable
! received bits in positions 1:K in order of decreasing reliability (more or less).
! reliability will not be strictly decreasing because column re-ordering is needed
! to put the generator matrix in systematic form. the "indices" array tracks
! column permutations caused by reliability sorting and gaussian elimination.
do id=1,K ! diagonal element indices
do icol=id,K+20 ! The 20 is ad hoc - beware
iflag=0
if( genmrb(id,icol) .eq. 1 ) then
iflag=1
if( icol .ne. id ) then ! reorder column
temp(1:K)=genmrb(1:K,id)
genmrb(1:K,id)=genmrb(1:K,icol)
genmrb(1:K,icol)=temp(1:K)
itmp=indices(id)
indices(id)=indices(icol)
indices(icol)=itmp
endif
do ii=1,K
if( ii .ne. id .and. genmrb(ii,id) .eq. 1 ) then
genmrb(ii,1:N)=mod(genmrb(ii,1:N)+genmrb(id,1:N),2)
endif
enddo
exit
endif
enddo
enddo
! The hard decisions for the K MRB bits define the order 0 message, m0.
! Encode m0 using the modified generator matrix to find the "order 0" codeword.
! Flip various combinations of bits in m0 and re-encode to generate a list of
! codewords. Test all such codewords against the received word to decide which
! codeword is most likely to be correct.
hdec=hdec(indices)
m0=hdec(1:K)
nhardmin=N
j0=0
j1=0
j2=0
j3=0
if( norder.ge.4 ) j0=K
if( norder.ge.3 ) j1=K
if( norder.ge.2 ) j2=K
if( norder.ge.1 ) j3=K
! me(0) is a dummy position --- only me(1:K) are actually used. This is done
! to avoid "if" statements within the inner loop.
do i1=0,j0
do i2=i1,j1
do i3=i2,j2
do i4=i3,j3
me(1:K)=m0
me(i1)=1-me(i1)
me(i2)=1-me(i2)
me(i3)=1-me(i3)
me(i4)=1-me(i4)
! me is the m0 + error pattern. encode this message using genmrb to
! produce a codeword. test the codeword against the received vector
! and save it if it's the best that we've seen so far.
do i=1,N
nsum=sum(iand(me(1:K),genmrb(1:K,i)))
codeword(i)=mod(nsum,2)
enddo
nhard=count(codeword .ne. hdec)
if( nhard .lt. nhardmin ) then
cw=codeword
nhardmin=nhard
i1min=i1
i2min=i2
i3min=i3
i4min=i4
endif
enddo
enddo
enddo
enddo
! re-order the codeword to place message bits at the end
cw(indices)=cw
decoded=cw(M+1:N)
niterations=1
return
end subroutine osd300