WSJT-X/lib/fsk4hf/osd300.f90
Steven Franke 362fd04b23 First steps toward generalizing the ordered statistics decoder to make it easier to use it for other block codes.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@7665 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2017-05-07 15:00:50 +00:00

151 lines
4.1 KiB
Fortran

subroutine osd300(llr,norder,decoded,niterations,cw)
!
! An ordered-statistics decoder based on ideas from:
! "Soft-decision decoding of linear block codes based on ordered statistics,"
! by Marc P. C. Fossorier and Shu Lin,
! IEEE Trans Inf Theory, Vol 41, No 5, Sep 1995
!
include "ldpc_300_60_params.f90"
integer*1 gen(K,N)
integer*1 genmrb(K,N)
integer*1 temp(K),m0(K),me(K)
integer indices(N)
integer*1 codeword(N),cw(N),hdec(N)
integer*1 decoded(K)
integer indx(N)
real llr(N),rx(N),absrx(N)
logical first
data first/.true./
save first,gen
if( first ) then ! fill the generator matrix
gen=0
do i=1,M
do j=1,15
read(g(i)(j:j),"(Z1)") istr
do jj=1, 4
irow=(j-1)*4+jj
if( btest(istr,4-jj) ) gen(irow,i)=1
enddo
enddo
enddo
do irow=1,K
gen(irow,M+irow)=1
enddo
first=.false.
endif
! re-order received vector to place systematic msg bits at the end
rx=llr(colorder+1)
! hard decode the received word
hdec=0
where(rx .ge. 0) hdec=1
! use magnitude of received symbols as a measure of reliability.
absrx=abs(rx)
call indexx(absrx,N,indx)
! re-order the columns of the generator matrix in order of increasing reliability.
do i=1,N
genmrb(1:K,N+1-i)=gen(1:K,indx(N+1-i))
enddo
! do gaussian elimination to create a generator matrix with the most reliable
! received bits as the systematic bits. if it happens that the K most reliable
! bits are not independent, then we will encounter a zero pivot, in that case
! we dip into the less reliable bits to find K independent MRBs.
! the "indices" array will track any column reordering that is done as part
! of the gaussian elimination.
do i=1,N
indices(i)=indx(i)
enddo
do id=1,K ! diagonal element indices
do ic=id,K+20 ! The 20 is ad hoc - beware
icol=N-K+ic
if( icol .gt. N ) icol=M+1-(icol-N)
iflag=0
if( genmrb(id,icol) .eq. 1 ) then
iflag=1
if( icol-M .ne. id ) then ! reorder column
temp(1:K)=genmrb(1:K,M+id)
genmrb(1:K,M+id)=genmrb(1:K,icol)
genmrb(1:K,icol)=temp(1:K)
itmp=indices(M+id)
indices(M+id)=indices(icol)
indices(icol)=itmp
endif
do ii=1,K
if( ii .ne. id .and. genmrb(ii,N-K+id) .eq. 1 ) then
genmrb(ii,1:N)=mod(genmrb(ii,1:N)+genmrb(id,1:N),2)
endif
enddo
exit
endif
enddo
enddo
! now, use the indices of the K MRB bits to find the hard-decisions
! for those bits. the resulting message is encoded to find the
! zero'th order codeword estimate (assuming no errors in the MRB).
m0=0
where (rx(indices(M+1:N)).ge.0.0) m0=1
! the MRB should have only a few errors. Try various error patterns,
! re-encode each errored version of the MRBs, re-order the resulting codeword
! and compare with the original received vector. Keep the best codeword.
nhardmin=N
corrmax=-1.0e32
j0=0
j1=0
j2=0
j3=0
if( norder.ge.4 ) j0=K
if( norder.ge.3 ) j1=K
if( norder.ge.2 ) j2=K
if( norder.ge.1 ) j3=K
do i1=0,j0
do i2=i1,j1
do i3=i2,j2
do i4=i3,j3
me=m0
if( i1 .ne. 0 ) me(i1)=1-me(i1)
if( i2 .ne. 0 ) me(i2)=1-me(i2)
if( i3 .ne. 0 ) me(i3)=1-me(i3)
if( i4 .ne. 0 ) me(i4)=1-me(i4)
! me is the MRB message + error pattern
! use the modified generator matrix to encode this message,
! producing a codeword that will be tested against the received vector
do i=1,N
nsum=sum(iand(me,genmrb(1:K,i)))
codeword(i)=mod(nsum,2)
enddo
! undo the index permutations to put the "real" message bits at the end
codeword(indices)=codeword
nhard=count(codeword .ne. hdec)
! corr=sum(codeword*rx) ! to save time use nhard to pick best codeword
if( nhard .lt. nhardmin ) then
! if( corr .gt. corrmax ) then
cw=codeword
nhardmin=nhard
! corrmax=corr
i1min=i1
i2min=i2
i3min=i3
i4min=i4
if( nhardmin .le. 85 ) goto 200 ! tune for each code
endif
enddo
enddo
enddo
enddo
200 decoded=cw(M+1:N)
niterations=-1
if( nhardmin .le. 90 ) niterations=1 ! tune for each code
return
end subroutine osd300