fix location of some of the tables

this fixes the last open issue of #54
This commit is contained in:
Steffen Jaeckel 2017-09-20 14:33:04 +02:00
parent 2d3a921de4
commit 9fb08af23d

View File

@ -8,6 +8,7 @@
\usepackage{graphicx}
\usepackage{layout}
\usepackage{fancyhdr}
\usepackage{float}
\def\union{\cup}
\def\intersect{\cap}
\def\getsrandom{\stackrel{\rm R}{\gets}}
@ -2523,7 +2524,7 @@ int unregister_hash(const struct _hash_descriptor *hash);
The following hashes are provided as of this release within the LibTomCrypt library:
\index{Hash descriptor table}
\begin{figure}[h]
\begin{figure}[H]
\begin{center}
\begin{tabular}{|c|c|c|}
\hline \textbf{Name} & \textbf{Descriptor Name} & \textbf{Size of Message Digest (bytes)} \\
@ -3627,7 +3628,7 @@ descriptor twice, and will return the index of the current placement in the tabl
will return \textbf{CRYPT\_OK} if the PRNG was found and removed. Otherwise, it returns \textbf{CRYPT\_ERROR}.
\subsection{PRNGs Provided}
\begin{figure}[h]
\begin{figure}[H]
\begin{center}
\begin{small}
\begin{tabular}{|c|c|l|}
@ -5166,7 +5167,7 @@ The variable \textit{prng} is an active PRNG state and \textit{wprng} the index
\textit{group\_size} the more difficult a forgery becomes upto a limit. The value of $group\_size$ is limited by
$15 < group\_size < 1024$ and $modulus\_size - group\_size < 512$. Suggested values for the pairs are as follows.
\begin{figure}[h]
\begin{figure}[H]
\begin{center}
\begin{tabular}{|c|c|c|}
\hline \textbf{Bits of Security} & \textbf{group\_size} & \textbf{modulus\_size} \\
@ -6666,7 +6667,7 @@ e^{1.923 \cdot ln(n)^{1 \over 3} \cdot ln(ln(n))^{2 \over 3}}
Note that $n$ is not the bit-length but the magnitude. For example, for a 1024-bit key $n = 2^{1024}$. The work required
is:
\begin{figure}[h]
\begin{figure}[H]
\begin{center}
\begin{tabular}{|c|c|}
\hline RSA/DH Key Size (bits) & Work Factor ($log_2$) \\
@ -6686,7 +6687,7 @@ is:
The work factor for ECC keys is much higher since the best attack is still fully exponential. Given a key of magnitude
$n$ it requires $\sqrt n$ work. The following table summarizes the work required:
\begin{figure}[h]
\begin{figure}[H]
\begin{center}
\begin{tabular}{|c|c|}
\hline ECC Key Size (bits) & Work Factor ($log_2$) \\