tomcrypt/prime.c
2010-06-16 12:37:58 +02:00

167 lines
3.9 KiB
C

#include "mycrypt.h"
#ifdef MPI
#define UPPER_LIMIT PRIME_SIZE
/* figures out if a number is prime (MR test) */
int is_prime(mp_int *N, int *result)
{
int err;
if ((err = mp_prime_is_prime(N, 8, result)) != MP_OKAY) {
return CRYPT_MEM;
}
return CRYPT_OK;
}
static int next_prime(mp_int *N, mp_digit step)
{
long x, s, j, total_dist;
int res;
mp_int n1, a, y, r;
mp_digit dist, residues[UPPER_LIMIT];
_ARGCHK(N != NULL);
/* first find the residues */
for (x = 0; x < (long)UPPER_LIMIT; x++) {
if (mp_mod_d(N, __prime_tab[x], &residues[x]) != MP_OKAY) {
return CRYPT_MEM;
}
}
/* init variables */
if (mp_init_multi(&r, &n1, &a, &y, NULL) != MP_OKAY) {
return CRYPT_MEM;
}
total_dist = 0;
loop:
/* while one of the residues is zero keep looping */
dist = step;
for (x = 0; (dist < (MP_DIGIT_MAX-step-1)) && (x < (long)UPPER_LIMIT); x++) {
j = (long)residues[x] + (long)dist + total_dist;
if (j % (long)__prime_tab[x] == 0) {
dist += step; x = -1;
}
}
/* recalc the total distance from where we started */
total_dist += dist;
/* add to N */
if (mp_add_d(N, dist, N) != MP_OKAY) { goto error; }
/* n1 = N - 1 */
if (mp_sub_d(N, 1, &n1) != MP_OKAY) { goto error; }
/* r = N - 1 */
if (mp_copy(&n1, &r) != MP_OKAY) { goto error; }
/* find s such that N-1 = (2^s)r */
s = 0;
while (mp_iseven(&r)) {
++s;
if (mp_div_2(&r, &r) != MP_OKAY) {
goto error;
}
}
for (x = 0; x < 8; x++) {
/* choose a */
mp_set(&a, __prime_tab[x]);
/* compute y = a^r mod n */
if (mp_exptmod(&a, &r, N, &y) != MP_OKAY) { goto error; }
/* (y != 1) AND (y != N-1) */
if ((mp_cmp_d(&y, 1) != 0) && (mp_cmp(&y, &n1) != 0)) {
/* while j <= s-1 and y != n-1 */
for (j = 1; (j <= (s-1)) && (mp_cmp(&y, &n1) != 0); j++) {
/* y = y^2 mod N */
if (mp_sqrmod(&y, N, &y) != MP_OKAY) { goto error; }
/* if y == 1 return false */
if (mp_cmp_d(&y, 1) == 0) { goto loop; }
}
/* if y != n-1 return false */
if (mp_cmp(&y, &n1) != 0) { goto loop; }
}
}
res = CRYPT_OK;
goto done;
error:
res = CRYPT_MEM;
done:
mp_clear_multi(&a, &y, &n1, &r, NULL);
#ifdef CLEAN_STACK
zeromem(residues, sizeof(residues));
#endif
return res;
}
int rand_prime(mp_int *N, long len, prng_state *prng, int wprng)
{
unsigned char buf[260];
int err, step, ormask;
_ARGCHK(N != NULL);
/* pass a negative size if you want a prime congruent to 3 mod 4 */
if (len < 0) {
step = 4;
ormask = 3;
len = -len;
} else {
step = 2;
ormask = 1;
}
/* allow sizes between 2 and 256 bytes for a prime size */
if (len < 2 || len > 256) {
return CRYPT_INVALID_PRIME_SIZE;
}
/* valid PRNG? */
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
/* read the prng */
if (prng_descriptor[wprng].read(buf+2, (unsigned long)len, prng) != (unsigned long)len) {
return CRYPT_ERROR_READPRNG;
}
/* set sign byte to zero */
buf[0] = (unsigned char)0;
/* Set the top byte to 0x01 which makes the number a len*8 bit number */
buf[1] = (unsigned char)0x01;
/* set the LSB to the desired settings
* (1 for any prime, 3 for primes congruent to 3 mod 4)
*/
buf[len+1] |= (unsigned char)ormask;
/* read the number in */
if (mp_read_raw(N, buf, 2+len) != MP_OKAY) {
return CRYPT_MEM;
}
/* add the step size to it while N is not prime */
if ((err = next_prime(N, step)) != CRYPT_OK) {
return err;
}
#ifdef CLEAN_STACK
zeromem(buf, sizeof(buf));
#endif
return CRYPT_OK;
}
#endif