tommath/bn_mp_gcd.c

106 lines
2.5 KiB
C
Raw Normal View History

2004-10-29 18:07:18 -04:00
#include <tommath.h>
#ifdef BN_MP_GCD_C
2003-02-28 11:08:34 -05:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
2003-08-04 21:24:44 -04:00
* LibTomMath is a library that provides multiple-precision
2003-02-28 11:08:34 -05:00
* integer arithmetic as well as number theoretic functionality.
*
2003-08-04 21:24:44 -04:00
* The library was designed directly after the MPI library by
2003-02-28 11:08:34 -05:00
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
2003-02-28 11:08:34 -05:00
*/
2003-07-02 11:39:39 -04:00
/* Greatest Common Divisor using the binary method */
2003-12-24 13:59:22 -05:00
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
2003-02-28 11:08:34 -05:00
{
2003-07-02 11:39:39 -04:00
mp_int u, v;
int k, u_lsb, v_lsb, res;
2003-02-28 11:08:34 -05:00
/* either zero than gcd is the largest */
2006-04-06 15:49:59 -04:00
if (mp_iszero (a) == MP_YES) {
2003-08-04 21:24:44 -04:00
return mp_abs (b, c);
2003-02-28 11:08:34 -05:00
}
2006-04-06 15:49:59 -04:00
if (mp_iszero (b) == MP_YES) {
2003-08-04 21:24:44 -04:00
return mp_abs (a, c);
2003-02-28 11:08:34 -05:00
}
2003-08-04 21:24:44 -04:00
/* get copies of a and b we can modify */
2003-02-28 11:08:34 -05:00
if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
return res;
}
if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
2004-12-22 21:40:37 -05:00
goto LBL_U;
2003-02-28 11:08:34 -05:00
}
/* must be positive for the remainder of the algorithm */
u.sign = v.sign = MP_ZPOS;
2003-07-02 11:39:39 -04:00
/* B1. Find the common power of two for u and v */
u_lsb = mp_cnt_lsb(&u);
v_lsb = mp_cnt_lsb(&v);
k = MIN(u_lsb, v_lsb);
2003-02-28 11:08:34 -05:00
2003-08-04 21:24:44 -04:00
if (k > 0) {
/* divide the power of two out */
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
2004-12-22 21:40:37 -05:00
goto LBL_V;
2003-08-04 21:24:44 -04:00
}
2003-02-28 11:08:34 -05:00
2003-08-04 21:24:44 -04:00
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
2004-12-22 21:40:37 -05:00
goto LBL_V;
2003-08-04 21:24:44 -04:00
}
2003-02-28 11:08:34 -05:00
}
2003-07-02 11:39:39 -04:00
/* divide any remaining factors of two out */
if (u_lsb != k) {
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
2004-12-22 21:40:37 -05:00
goto LBL_V;
2003-07-02 11:39:39 -04:00
}
2003-02-28 11:08:34 -05:00
}
2003-07-02 11:39:39 -04:00
if (v_lsb != k) {
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
2004-12-22 21:40:37 -05:00
goto LBL_V;
2003-07-02 11:39:39 -04:00
}
}
2003-08-04 21:24:44 -04:00
2015-10-25 11:34:43 -04:00
while (mp_iszero(&v) == MP_NO) {
2003-07-02 11:39:39 -04:00
/* make sure v is the largest */
if (mp_cmp_mag(&u, &v) == MP_GT) {
2003-08-04 21:24:44 -04:00
/* swap u and v to make sure v is >= u */
2003-07-02 11:39:39 -04:00
mp_exch(&u, &v);
}
/* subtract smallest from largest */
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
2004-12-22 21:40:37 -05:00
goto LBL_V;
2003-07-02 11:39:39 -04:00
}
/* Divide out all factors of two */
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
2004-12-22 21:40:37 -05:00
goto LBL_V;
2003-07-02 11:39:39 -04:00
}
}
2003-08-04 21:24:44 -04:00
/* multiply by 2**k which we divided out at the beginning */
2003-07-02 11:39:39 -04:00
if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
2004-12-22 21:40:37 -05:00
goto LBL_V;
2003-07-02 11:39:39 -04:00
}
c->sign = MP_ZPOS;
2003-02-28 11:08:34 -05:00
res = MP_OKAY;
2004-12-22 21:40:37 -05:00
LBL_V:mp_clear (&u);
LBL_U:mp_clear (&v);
2003-02-28 11:08:34 -05:00
return res;
}
2004-10-29 18:07:18 -04:00
#endif
2005-08-01 12:37:28 -04:00
/* $Source$ */
/* $Revision$ */
/* $Date$ */