1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-21 15:51:47 -05:00

WDSP: impulse responses refactoring (1)

This commit is contained in:
f4exb 2024-08-08 09:09:40 +02:00
parent 130d40c218
commit 62f05b3706
14 changed files with 161 additions and 158 deletions

View File

@ -34,11 +34,10 @@ namespace WDSP {
void CFIR::calc()
{
float* impulse;
std::vector<float> impulse;
scale = 1.0 / (float)(2 * size);
impulse = cfir_impulse (nc, DD, R, Pairs, runrate, cicrate, cutoff, xtype, xbw, 1, scale, wintype);
p = new FIRCORE(size, in, out, nc, mp, impulse);
delete[] impulse;
cfir_impulse (impulse, nc, DD, R, Pairs, runrate, cicrate, cutoff, xtype, xbw, 1, scale, wintype);
p = new FIRCORE(size, in, out, nc, mp, impulse.data());
}
void CFIR::decalc()
@ -142,7 +141,8 @@ void CFIR::setOutRate(int rate)
calc();
}
float* CFIR::cfir_impulse (
void CFIR::cfir_impulse (
std::vector<float>& impulse,
int _N,
int _DD,
int _R,
@ -175,7 +175,6 @@ float* CFIR::cfir_impulse (
double ri;
double mag = 0;
double fn;
float* impulse;
std::vector<float> A(_N);
double ft = _cutoff / _cicrate; // normalized cutoff frequency
int u_samps = (_N + 1) / 2; // number of unique samples, OK for odd or even N
@ -254,8 +253,8 @@ float* CFIR::cfir_impulse (
else
for (i = u_samps, j = 1; i < _N; i++, j++)
A[i] = A[u_samps - j];
impulse = FIR::fir_fsamp (_N, A.data(), _rtype, 1.0, _wintype);
return impulse;
impulse.resize(2 * _N);
FIR::fir_fsamp (impulse, _N, A.data(), _rtype, 1.0, _wintype);
}
/********************************************************************************************************

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_cfir_h
#define wdsp_cfir_h
#include <vector>
#include "export.h"
namespace WDSP {
@ -83,7 +85,8 @@ public:
void setSamplerate(int rate);
void setSize(int size);
void setOutRate(int rate);
static float* cfir_impulse (
static void cfir_impulse (
std::vector<float>& impulse,
int N,
int DD,
int R,

View File

@ -53,7 +53,6 @@ EMPHP::EMPHP(
double _f_high
)
{
float* impulse;
run = _run;
position = _position;
size = _size;
@ -65,7 +64,9 @@ EMPHP::EMPHP(
ctype = _ctype;
f_low = _f_low;
f_high = _f_high;
impulse = FCurve::fc_impulse (
std::vector<float> impulse(2 * nc);
FCurve::fc_impulse (
impulse,
nc,
f_low,
f_high,
@ -76,8 +77,7 @@ EMPHP::EMPHP(
1.0 / (2.0 * size),
0, 0
);
p = new FIRCORE(size, in, out, nc, mp, impulse);
delete[] (impulse);
p = new FIRCORE(size, in, out, nc, mp, impulse.data());
}
EMPHP::~EMPHP()
@ -107,9 +107,10 @@ void EMPHP::setBuffers(float* _in, float* _out)
void EMPHP::setSamplerate(int _rate)
{
float* impulse;
rate = _rate;
impulse = FCurve::fc_impulse (
std::vector<float> impulse(2 * nc);
FCurve::fc_impulse (
impulse,
nc,
f_low,
f_high,
@ -120,16 +121,16 @@ void EMPHP::setSamplerate(int _rate)
1.0 / (2.0 * size),
0, 0
);
p->setImpulse(impulse, 1);
delete[] (impulse);
p->setImpulse(impulse.data(), 1);
}
void EMPHP::setSize(int _size)
{
float* impulse;
size = _size;
p->setSize(size);
impulse = FCurve::fc_impulse (
std::vector<float> impulse(2 * nc);
FCurve::fc_impulse (
impulse,
nc,
f_low,
f_high,
@ -141,8 +142,7 @@ void EMPHP::setSize(int _size)
0,
0
);
p->setImpulse(impulse, 1);
delete[] (impulse);
p->setImpulse(impulse.data(), 1);
}
/********************************************************************************************************
@ -167,12 +167,12 @@ void EMPHP::setMP(int _mp)
void EMPHP::setNC(int _nc)
{
float* impulse;
if (nc != _nc)
{
nc = _nc;
impulse = FCurve::fc_impulse (
std::vector<float> impulse(2 * nc);
FCurve::fc_impulse (
impulse,
nc,
f_low,
f_high,
@ -184,20 +184,19 @@ void EMPHP::setNC(int _nc)
0,
0
);
p->setNc(nc, impulse);
delete[] (impulse);
p->setNc(nc, impulse.data());
}
}
void EMPHP::setFreqs(double low, double high)
{
float* impulse;
if (f_low != low || f_high != high)
{
f_low = low;
f_high = high;
impulse = FCurve::fc_impulse (
std::vector<float> impulse(2 * nc);
FCurve::fc_impulse (
impulse,
nc,
f_low,
f_high,
@ -209,8 +208,7 @@ void EMPHP::setFreqs(double low, double high)
0,
0
);
p->setImpulse(impulse, 1);
delete[] (impulse);
p->setImpulse(impulse.data(), 1);
}
}

View File

@ -44,12 +44,12 @@ namespace WDSP {
void EQ::eq_mults (std::vector<float>& mults, int size, int nfreqs, float* F, float* G, float samplerate, float scale, int ctfmode, int wintype)
{
float* impulse = EQP::eq_impulse (size + 1, nfreqs, F, G, samplerate, scale, ctfmode, wintype);
float* _mults = FIR::fftcv_mults(2 * size, impulse);
std::vector<float> impulse;
EQP::eq_impulse (impulse, size + 1, nfreqs, F, G, samplerate, scale, ctfmode, wintype);
float* _mults = FIR::fftcv_mults(2 * size, impulse.data());
mults.resize(2 * size * 2);
std::copy(_mults, _mults + 2*size*2, mults.begin());
delete[] _mults;
delete[] impulse;
}
void EQ::calc()

View File

@ -42,25 +42,34 @@ int EQP::fEQcompare (const void * a, const void * b)
return 1;
}
float* EQP::eq_impulse (int N, int nfreqs, const float* F, const float* G, double samplerate, double scale, int ctfmode, int wintype)
void EQP::eq_impulse (
std::vector<float>& impulse,
int N,
int _nfreqs,
const float* F,
const float* G,
double samplerate,
double scale,
int ctfmode,
int wintype
)
{
std::vector<float> fp(nfreqs + 2);
std::vector<float> gp(nfreqs + 2);
std::vector<float> fp(_nfreqs + 2);
std::vector<float> gp(_nfreqs + 2);
std::vector<float> A(N / 2 + 1);
float* sary = new float[2 * nfreqs];
float* sary = new float[2 * _nfreqs];
double gpreamp;
double f;
double frac;
float* impulse;
int i;
int j;
int mid;
fp[0] = 0.0;
fp[nfreqs + 1] = 1.0;
fp[_nfreqs + 1] = 1.0;
gpreamp = G[0];
for (i = 1; i <= nfreqs; i++)
for (i = 1; i <= _nfreqs; i++)
{
fp[i] = (float) (2.0 * F[i] / samplerate);
@ -73,22 +82,22 @@ float* EQP::eq_impulse (int N, int nfreqs, const float* F, const float* G, doubl
gp[i] = G[i];
}
for (i = 1, j = 0; i <= nfreqs; i++, j+=2)
for (i = 1, j = 0; i <= _nfreqs; i++, j+=2)
{
sary[j + 0] = fp[i];
sary[j + 1] = gp[i];
}
qsort (sary, nfreqs, 2 * sizeof (float), fEQcompare);
qsort (sary, _nfreqs, 2 * sizeof (float), fEQcompare);
for (i = 1, j = 0; i <= nfreqs; i++, j+=2)
for (i = 1, j = 0; i <= _nfreqs; i++, j+=2)
{
fp[i] = sary[j + 0];
gp[i] = sary[j + 1];
}
gp[0] = gp[1];
gp[nfreqs + 1] = gp[nfreqs];
gp[_nfreqs + 1] = gp[_nfreqs];
mid = N / 2;
j = 0;
@ -98,7 +107,7 @@ float* EQP::eq_impulse (int N, int nfreqs, const float* F, const float* G, doubl
{
f = (double)i / (double)mid;
while ((f > fp[j + 1]) && (j < nfreqs))
while ((f > fp[j + 1]) && (j < _nfreqs))
j++;
frac = (f - fp[j]) / (fp[j + 1] - fp[j]);
@ -111,7 +120,7 @@ float* EQP::eq_impulse (int N, int nfreqs, const float* F, const float* G, doubl
{
f = ((double)i + 0.5) / (double)mid;
while ((f > fp[j + 1]) && (j < nfreqs))
while ((f > fp[j + 1]) && (j < _nfreqs))
j++;
frac = (f - fp[j]) / (fp[j + 1] - fp[j]);
@ -132,7 +141,7 @@ float* EQP::eq_impulse (int N, int nfreqs, const float* F, const float* G, doubl
if (N & 1)
{
low = (int)(fp[1] * mid);
high = (int)(fp[nfreqs] * mid + 0.5);
high = (int)(fp[_nfreqs] * mid + 0.5);
lowmag = A[low];
highmag = A[high];
flow4 = pow((double)low / (double)mid, 4.0);
@ -160,7 +169,7 @@ float* EQP::eq_impulse (int N, int nfreqs, const float* F, const float* G, doubl
else
{
low = (int)(fp[1] * mid - 0.5);
high = (int)(fp[nfreqs] * mid - 0.5);
high = (int)(fp[_nfreqs] * mid - 0.5);
lowmag = A[low];
highmag = A[high];
flow4 = pow((double)low / (double)mid, 4.0);
@ -187,13 +196,14 @@ float* EQP::eq_impulse (int N, int nfreqs, const float* F, const float* G, doubl
}
}
impulse.resize(2 * N);
if (N & 1)
impulse = FIR::fir_fsamp_odd(N, A.data(), 1, 1.0, wintype);
FIR::fir_fsamp_odd(impulse, N, A.data(), 1, 1.0, wintype);
else
impulse = FIR::fir_fsamp(N, A.data(), 1, 1.0, wintype);
FIR::fir_fsamp(impulse, N, A.data(), 1, 1.0, wintype);
delete[] sary;
return impulse;
}
/********************************************************************************************************
@ -218,7 +228,7 @@ EQP::EQP(
)
{
// NOTE: 'nc' must be >= 'size'
float* impulse;
std::vector<float> impulse;
run = _run;
size = _size;
nc = _nc;
@ -233,9 +243,8 @@ EQP::EQP(
ctfmode = _ctfmode;
wintype = _wintype;
samplerate = (double) _samplerate;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore = new FIRCORE(size, in, out, nc, mp, impulse);
delete[] impulse;
eq_impulse (impulse, nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore = new FIRCORE(size, in, out, nc, mp, impulse.data());
}
EQP::~EQP()
@ -265,21 +274,19 @@ void EQP::setBuffers(float* _in, float* _out)
void EQP::setSamplerate(int rate)
{
float* impulse;
std::vector<float> impulse;
samplerate = rate;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse, 1);
delete[] impulse;
eq_impulse (impulse, nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse.data(), 1);
}
void EQP::setSize(int _size)
{
float* impulse;
std::vector<float> impulse;
size = _size;
fircore->setSize(size);
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse, 1);
delete[] impulse;
eq_impulse (impulse, nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse.data(), 1);
}
/********************************************************************************************************
@ -295,14 +302,13 @@ void EQP::setRun(int _run)
void EQP::setNC(int _nc)
{
float* impulse;
std::vector<float> impulse;
if (nc != _nc)
{
nc = _nc;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setNc(nc, impulse);
delete[] impulse;
eq_impulse (impulse, nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setNc(nc, impulse.data());
}
}
@ -317,38 +323,35 @@ void EQP::setMP(int _mp)
void EQP::setProfile(int _nfreqs, const float* _F, const float* _G)
{
float* impulse;
std::vector<float> impulse;
nfreqs = _nfreqs;
F.resize(nfreqs + 1);
G.resize(nfreqs + 1);
std::copy(_F, _F + (_nfreqs + 1), F.begin());
std::copy(_G, _G + (_nfreqs + 1), G.begin());
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse, 1);
delete[] impulse;
eq_impulse (impulse, nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse.data(), 1);
}
void EQP::setCtfmode(int _mode)
{
float* impulse;
std::vector<float> impulse;
ctfmode = _mode;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse, 1);
delete[] impulse;
eq_impulse (impulse, nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse.data(), 1);
}
void EQP::setWintype(int _wintype)
{
float* impulse;
std::vector<float> impulse;
wintype = _wintype;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse, 1);
delete[] impulse;
eq_impulse (impulse, nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse.data(), 1);
}
void EQP::setGrphEQ(const int *rxeq)
{ // three band equalizer (legacy compatibility)
float* impulse;
std::vector<float> impulse;
nfreqs = 4;
F.resize(nfreqs + 1);
G.resize(nfreqs + 1);
@ -362,14 +365,13 @@ void EQP::setGrphEQ(const int *rxeq)
G[3] = (float)rxeq[2];
G[4] = (float)rxeq[3];
ctfmode = 0;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse, 1);
delete[] impulse;
eq_impulse (impulse, nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse.data(), 1);
}
void EQP::setGrphEQ10(const int *rxeq)
{ // ten band equalizer (legacy compatibility)
float* impulse;
std::vector<float> impulse;
nfreqs = 10;
F.resize(nfreqs + 1);
G.resize(nfreqs + 1);
@ -386,9 +388,8 @@ void EQP::setGrphEQ10(const int *rxeq)
for (int i = 0; i <= nfreqs; i++)
G[i] = (float)rxeq[i];
ctfmode = 0;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse, 1);
delete[] impulse;
eq_impulse (impulse, nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore->setImpulse(impulse.data(), 1);
}
} // namespace WDSP

View File

@ -92,7 +92,17 @@ public:
void setGrphEQ(const int *rxeq);
void setGrphEQ10(const int *rxeq);
static float* eq_impulse (int N, int nfreqs, const float* F, const float* G, double samplerate, double scale, int ctfmode, int wintype);
static void eq_impulse (
std::vector<float>& impulse,
int N,
int nfreqs,
const float* F,
const float* G,
double samplerate,
double scale,
int ctfmode,
int wintype
);
private:
static int fEQcompare (const void * a, const void * b);

View File

@ -31,12 +31,11 @@ warren@wpratt.com
namespace WDSP {
float* FCurve::fc_impulse (int nc, float f0, float f1, float g0, float, int curve, float samplerate, float scale, int ctfmode, int wintype)
void FCurve::fc_impulse (std::vector<float>& impulse, int nc, float f0, float f1, float g0, float, int curve, float samplerate, float scale, int ctfmode, int wintype)
{
float* A = new float[nc / 2 + 1]; // (float *) malloc0 ((nc / 2 + 1) * sizeof (float));
int i;
float fn, f;
float* impulse;
int mid = nc / 2;
float g0_lin = pow(10.0, g0 / 20.0);
if (nc & 1)
@ -140,21 +139,21 @@ float* FCurve::fc_impulse (int nc, float f0, float f1, float g0, float, int curv
}
}
}
if (nc & 1)
impulse = FIR::fir_fsamp_odd(nc, A, 1, 1.0, wintype);
FIR::fir_fsamp_odd(impulse, nc, A, 1, 1.0, wintype);
else
impulse = FIR::fir_fsamp(nc, A, 1, 1.0, wintype);
FIR::fir_fsamp(impulse, nc, A, 1, 1.0, wintype);
// print_impulse ("emph.txt", size + 1, impulse, 1, 0);
delete[] (A);
return impulse;
}
// generate mask for Overlap-Save Filter
float* FCurve::fc_mults (int size, float f0, float f1, float g0, float g1, int curve, float samplerate, float scale, int ctfmode, int wintype)
{
float* impulse = fc_impulse (size + 1, f0, f1, g0, g1, curve, samplerate, scale, ctfmode, wintype);
float* mults = FIR::fftcv_mults(2 * size, impulse);
delete[] (impulse);
std::vector<float> impulse(2 * (size + 1));
fc_impulse (impulse, size + 1, f0, f1, g0, g1, curve, samplerate, scale, ctfmode, wintype);
float* mults = FIR::fftcv_mults(2 * size, impulse.data());
return mults;
}

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_fcurve_h
#define wdsp_fcurve_h
#include <vector>
#include "export.h"
namespace WDSP {
@ -35,7 +37,7 @@ namespace WDSP {
class WDSP_API FCurve
{
public:
static float* fc_impulse (int nc, float f0, float f1, float g0, float g1, int curve, float samplerate, float scale, int ctfmode, int wintype);
static void fc_impulse (std::vector<float>& impulse, int nc, float f0, float f1, float g0, float g1, int curve, float samplerate, float scale, int ctfmode, int wintype);
static float* fc_mults (int size, float f0, float f1, float g0, float g1, int curve, float samplerate, float scale, int ctfmode, int wintype);
};

View File

@ -95,17 +95,16 @@ float* FIR::get_fsamp_window(int N, int wintype)
return window;
}
float* FIR::fir_fsamp_odd (int N, const float* A, int rtype, double scale, int wintype)
void FIR::fir_fsamp_odd (std::vector<float>& c_impulse, int N, const float* A, int rtype, double scale, int wintype)
{
int mid = (N - 1) / 2;
double mag;
double phs;
std::vector<float> fcoef(N * 2);
auto *c_impulse = new float[N * 2];
fftwf_plan ptmp = fftwf_plan_dft_1d(
N,
(fftwf_complex *)fcoef.data(),
(fftwf_complex *)c_impulse,
(fftwf_complex *)c_impulse.data(),
FFTW_BACKWARD,
FFTW_PATIENT
);
@ -142,13 +141,11 @@ float* FIR::fir_fsamp_odd (int N, const float* A, int rtype, double scale, int w
break;
}
delete[] window;
return c_impulse;
}
float* FIR::fir_fsamp (int N, const float* A, int rtype, double scale, int wintype)
void FIR::fir_fsamp (std::vector<float>& c_impulse, int N, const float* A, int rtype, double scale, int wintype)
{
double sum;
auto c_impulse = new float[N * 2];
if (N & 1)
{
@ -202,7 +199,6 @@ float* FIR::fir_fsamp (int N, const float* A, int rtype, double scale, int winty
break;
}
delete[] window;
return c_impulse;
}
float* FIR::fir_bandpass (int N, double f_low, double f_high, double samplerate, int wintype, int rtype, double scale)

View File

@ -37,8 +37,8 @@ class WDSP_API FIR
{
public:
static float* fftcv_mults (int NM, float* c_impulse);
static float* fir_fsamp_odd (int N, const float* A, int rtype, double scale, int wintype);
static float* fir_fsamp (int N, const float* A, int rtype, double scale, int wintype);
static void fir_fsamp_odd (std::vector<float>& c_impulse, int N, const float* A, int rtype, double scale, int wintype);
static void fir_fsamp (std::vector<float>& c_impulse, int N, const float* A, int rtype, double scale, int wintype);
static float* fir_bandpass (int N, double f_low, double f_high, double samplerate, int wintype, int rtype, double scale);
static void mp_imp (int N, std::vector<float>& fir, std::vector<float>& mpfir, int pfactor, int polarity);

View File

@ -143,11 +143,12 @@ FMD::FMD(
lim_gain(0.0001), // 2.5
lim_pre_gain(0.01) // 0.4
{
float* impulse;
calc();
// de-emphasis filter
audio.resize(size * 2);
impulse = FCurve::fc_impulse (
std::vector<float> impulse(2 * nc_de);
FCurve::fc_impulse (
impulse,
nc_de,
(float) f_low,
(float) f_high,
@ -158,12 +159,10 @@ FMD::FMD(
0,
0
);
pde = new FIRCORE(size, audio.data(), out, nc_de, mp_de, impulse);
delete[] impulse;
pde = new FIRCORE(size, audio.data(), out, nc_de, mp_de, impulse.data());
// audio filter
impulse = FIR::fir_bandpass(nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
paud = new FIRCORE(size, out, out, nc_aud, mp_aud, impulse);
delete[] impulse;
float *impulseb = FIR::fir_bandpass(nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
paud = new FIRCORE(size, out, out, nc_aud, mp_aud, impulseb);
}
FMD::~FMD()
@ -248,12 +247,13 @@ void FMD::setBuffers(float* _in, float* _out)
void FMD::setSamplerate(int _rate)
{
float* impulse;
decalc();
rate = _rate;
calc();
// de-emphasis filter
impulse = FCurve::fc_impulse (
std::vector<float> impulse(2 * nc_de);
FCurve::fc_impulse (
impulse,
nc_de,
(float) f_low,
(float) f_high,
@ -265,25 +265,25 @@ void FMD::setSamplerate(int _rate)
0,
0
);
pde->setImpulse(impulse, 1);
delete[] impulse;
pde->setImpulse(impulse.data(), 1);
// audio filter
impulse = FIR::fir_bandpass(nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
paud->setImpulse(impulse, 1);
delete[] impulse;
float* impulseb = FIR::fir_bandpass(nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
paud->setImpulse(impulseb, 1);
delete[] impulseb;
plim->setSamplerate((int) rate);
}
void FMD::setSize(int _size)
{
float* impulse;
decalc();
size = _size;
calc();
audio.resize(size * 2);
// de-emphasis filter
delete (pde);
impulse = FCurve::fc_impulse (
std::vector<float> impulse(2 * nc_de);
FCurve::fc_impulse (
impulse,
nc_de,
(float) f_low,
(float) f_high,
@ -295,13 +295,12 @@ void FMD::setSize(int _size)
0,
0
);
pde = new FIRCORE(size, audio.data(), out, nc_de, mp_de, impulse);
delete[] impulse;
pde = new FIRCORE(size, audio.data(), out, nc_de, mp_de, impulse.data());
// audio filter
delete (paud);
impulse = FIR::fir_bandpass(nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
paud = new FIRCORE(size, out, out, nc_aud, mp_aud, impulse);
delete[] impulse;
float* impulseb = FIR::fir_bandpass(nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
paud = new FIRCORE(size, out, out, nc_aud, mp_aud, impulseb);
delete[] impulseb;
plim->setSize(size);
}
@ -331,12 +330,12 @@ void FMD::setCTCSSRun(int _run)
void FMD::setNCde(int nc)
{
float* impulse;
if (nc_de != nc)
{
nc_de = nc;
impulse = FCurve::fc_impulse (
std::vector<float> impulse(2 * nc_de);
FCurve::fc_impulse (
impulse,
nc_de,
(float) f_low,
(float) f_high,
@ -348,8 +347,7 @@ void FMD::setNCde(int nc)
0,
0
);
pde->setNc(nc_de, impulse);
delete[] impulse;
pde->setNc(nc_de, impulse.data());
}
}
@ -405,14 +403,14 @@ void FMD::setLimGain(double gaindB)
void FMD::setAFFilter(double low, double high)
{
float* impulse;
if (f_low != low || f_high != high)
{
f_low = low;
f_high = high;
// de-emphasis filter
impulse = FCurve::fc_impulse (
std::vector<float> impulse(2 * nc_de);
FCurve::fc_impulse (
impulse,
nc_de,
(float) f_low,
(float) f_high,
@ -424,12 +422,11 @@ void FMD::setAFFilter(double low, double high)
0,
0
);
pde->setImpulse(impulse, 1);
delete[] impulse;
pde->setImpulse(impulse.data(), 1);
// audio filter
impulse = FIR::fir_bandpass (nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
paud->setImpulse(impulse, 1);
delete[] impulse;
float* impulseb = FIR::fir_bandpass (nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
paud->setImpulse(impulseb, 1);
delete[] impulseb;
}
}

View File

@ -36,7 +36,7 @@ void FMSQ::calc()
{
double delta;
double theta;
float* impulse;
std::vector<float> impulse;
int i;
// noise filter
noise.resize(2 * size * 2);
@ -48,9 +48,8 @@ void FMSQ::calc()
G[1] = 0.0;
G[2] = 3.0;
G[3] = (float) (+20.0 * log10(20000.0 / *pllpole));
impulse = EQP::eq_impulse (nc, 3, F.data(), G.data(), rate, 1.0 / (2.0 * size), 0, 0);
p = new FIRCORE(size, trigger, noise.data(), nc, mp, impulse);
delete[] impulse;
EQP::eq_impulse (impulse, nc, 3, F.data(), G.data(), rate, 1.0 / (2.0 * size), 0, 0);
p = new FIRCORE(size, trigger, noise.data(), nc, mp, impulse.data());
// noise averaging
avm = exp(-1.0 / (rate * avtau));
onem_avm = 1.0 - avm;
@ -286,14 +285,13 @@ void FMSQ::setThreshold(double threshold)
void FMSQ::setNC(int _nc)
{
float* impulse;
std::vector<float> impulse;
if (nc != _nc)
{
nc = _nc;
impulse = EQP::eq_impulse (nc, 3, F.data(), G.data(), rate, 1.0 / (2.0 * size), 0, 0);
p->setNc(nc, impulse);
delete[] impulse;
EQP::eq_impulse (impulse, nc, 3, F.data(), G.data(), rate, 1.0 / (2.0 * size), 0, 0);
p->setNc(nc, impulse.data());
}
}

View File

@ -34,11 +34,10 @@ namespace WDSP {
void ICFIR::calc_icfir (ICFIR *a)
{
float* impulse;
std::vector<float> impulse;
a->scale = 1.0f / (float)(2 * a->size);
impulse = icfir_impulse (a->nc, a->DD, a->R, a->Pairs, (float) a->runrate, (float) a->cicrate, a->cutoff, a->xtype, a->xbw, 1, a->scale, a->wintype);
a->p = new FIRCORE(a->size, a->in, a->out, a->nc, a->mp, impulse);
delete[] (impulse);
icfir_impulse (impulse, a->nc, a->DD, a->R, a->Pairs, (float) a->runrate, (float) a->cicrate, a->cutoff, a->xtype, a->xbw, 1, a->scale, a->wintype);
a->p = new FIRCORE(a->size, a->in, a->out, a->nc, a->mp, impulse.data());
}
void ICFIR::decalc_icfir (ICFIR *a)
@ -145,7 +144,8 @@ void ICFIR::setOutRate_icfir (ICFIR *a, int rate)
calc_icfir (a);
}
float* ICFIR::icfir_impulse (
void ICFIR::icfir_impulse (
std::vector<float>& impulse,
int N,
int DD,
int R,
@ -178,7 +178,6 @@ float* ICFIR::icfir_impulse (
float ri;
float mag;
float fn;
float* impulse;
auto* A = new float[N];
float ft = cutoff / cicrate; // normalized cutoff frequency
int u_samps = (N + 1) / 2; // number of unique samples, OK for odd or even N
@ -239,10 +238,10 @@ float* ICFIR::icfir_impulse (
else
for (i = u_samps, j = 1; i < N; i++, j++)
A[i] = A[u_samps - j];
impulse = FIR::fir_fsamp (N, A, rtype, 1.0, wintype);
impulse.resize(2 * N);
FIR::fir_fsamp (impulse, N, A, rtype, 1.0, wintype);
delete[] (A);
delete[] xistion;
return impulse;
}

View File

@ -79,7 +79,8 @@ public:
static void setSamplerate_icfir (ICFIR *a, int rate);
static void setSize_icfir (ICFIR *a, int size);
static void setOutRate_icfir (ICFIR *a, int rate);
static float* icfir_impulse (
static void icfir_impulse (
std::vector<float>& impulse,
int N,
int DD,
int R,