1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-21 15:51:47 -05:00

Compare commits

...

3 Commits

Author SHA1 Message Date
f4exb
130d40c218 WDSP: more rework 2024-08-07 21:14:09 +02:00
f4exb
fe08cd4a78 WDSP: FIRCORE rework 2024-08-06 06:26:53 +02:00
f4exb
34917a0b21 WDSP: more rework 2024-08-05 20:05:59 +02:00
54 changed files with 2589 additions and 2522 deletions

View File

@ -26,7 +26,6 @@
#include "util/messagequeue.h"
#include "maincore.h"
#include "RXA.hpp"
#include "nbp.hpp"
#include "meter.hpp"
#include "patchpanel.hpp"
#include "wcpAGC.hpp"
@ -83,10 +82,10 @@ void WDSPRxSink::SpectrumProbe::proceed(const float *in, int nb_samples)
{
if (!(m_undersampleCount++ & decim_mask))
{
float avgr = m_sum.real() / decim;
float avgi = m_sum.imag() / decim;
float avgr = m_sum.real() / (float) decim;
float avgi = m_sum.imag() / (float) decim;
if (!m_dsb & !m_usb)
if (!m_dsb && !m_usb)
{ // invert spectrum for LSB
m_sampleVector.push_back(Sample(avgi*SDR_RX_SCALEF, avgr*SDR_RX_SCALEF));
}
@ -175,14 +174,14 @@ void WDSPRxSink::feed(const SampleVector::const_iterator& begin, const SampleVec
}
}
void WDSPRxSink::getMagSqLevels(double& avg, double& peak, int& nbSamples)
void WDSPRxSink::getMagSqLevels(double& avg, double& peak, int& nbSamples) const
{
avg = m_sAvg;
peak = m_sPeak;
nbSamples = m_sCount;
}
void WDSPRxSink::processOneSample(Complex &ci)
void WDSPRxSink::processOneSample(const Complex &ci)
{
m_rxa->get_inbuff()[2*m_inCount] = ci.imag() / SDR_RX_SCALEF;
m_rxa->get_inbuff()[2*m_inCount+1] = ci.real() / SDR_RX_SCALEF;
@ -204,10 +203,10 @@ void WDSPRxSink::processOneSample(Complex &ci)
}
else
{
const double& cr = m_rxa->get_outbuff()[2*i+1];
const double& ci = m_rxa->get_outbuff()[2*i];
qint16 zr = cr * 32768.0;
qint16 zi = ci * 32768.0;
const double& dr = m_rxa->get_outbuff()[2*i+1];
const double& di = m_rxa->get_outbuff()[2*i];
qint16 zr = dr * 32768.0;
qint16 zi = di * 32768.0;
m_audioBuffer[m_audioBufferFill].r = zr;
m_audioBuffer[m_audioBufferFill].l = zi;
@ -219,7 +218,7 @@ void WDSPRxSink::processOneSample(Complex &ci)
else
{
Real demod = (zr + zi) * 0.7;
qint16 sample = (qint16)(demod);
auto sample = (qint16)(demod);
m_demodBuffer[m_demodBufferFill++] = sample;
}
@ -228,13 +227,11 @@ void WDSPRxSink::processOneSample(Complex &ci)
QList<ObjectPipe*> dataPipes;
MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes);
if (dataPipes.size() > 0)
if (!dataPipes.empty())
{
QList<ObjectPipe*>::iterator it = dataPipes.begin();
for (; it != dataPipes.end(); ++it)
for (auto dataPipe : dataPipes)
{
DataFifo *fifo = qobject_cast<DataFifo*>((*it)->m_element);
DataFifo *fifo = qobject_cast<DataFifo*>(dataPipe->m_element);
if (fifo)
{
@ -245,7 +242,7 @@ void WDSPRxSink::processOneSample(Complex &ci)
);
}
}
}
}
m_demodBufferFill = 0;
}
@ -316,7 +313,7 @@ void WDSPRxSink::applyAudioSampleRate(int sampleRate)
QList<ObjectPipe*> pipes;
MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes);
if (pipes.size() > 0)
if (!pipes.empty())
{
for (const auto& pipe : pipes)
{
@ -385,8 +382,13 @@ void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
(m_settings.m_demod != settings.m_demod) ||
(m_settings.m_dsb != settings.m_dsb) || force)
{
float band, low, high, fLow, fHigh;
bool usb, dsb;
float band;
float low;
float high;
float fLow;
float fHigh;
bool usb;
bool dsb;
band = settings.m_profiles[settings.m_profileIndex].m_highCutoff;
high = band;
@ -770,8 +772,8 @@ void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
|| (m_settings.m_agcHangThreshold != settings.m_agcHangThreshold)
|| (m_settings.m_agcGain != settings.m_agcGain) || force)
{
m_rxa->agc->setSlope(settings.m_agcSlope); // SetRXAAGCSlope(id, rx->agc_slope);
m_rxa->agc->setTop((float) settings.m_agcGain); // SetRXAAGCTop(id, rx->agc_gain);
m_rxa->agc->setSlope(settings.m_agcSlope);
m_rxa->agc->setTop((float) settings.m_agcGain);
if (settings.m_agc)
{
@ -779,31 +781,31 @@ void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
{
case WDSPRxProfile::WDSPRxAGCMode::AGCLong:
m_rxa->agc->setMode(1);
m_rxa->agc->setAttack(2); // SetRXAAGCAttack(id, 2);
m_rxa->agc->setHang(2000); // SetRXAAGCHang(id, 2000);
m_rxa->agc->setDecay(2000); // SetRXAAGCDecay(id, 2000);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, (int)rx->agc_hang_threshold);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(2000);
m_rxa->agc->setDecay(2000);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCSlow:
m_rxa->agc->setMode(2);
m_rxa->agc->setAttack(2); // SetRXAAGCAttack(id, 2);
m_rxa->agc->setHang(1000); // SetRXAAGCHang(id, 1000);
m_rxa->agc->setDecay(500); // SetRXAAGCDecay(id, 500);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, (int)rx->agc_hang_threshold);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(1000);
m_rxa->agc->setDecay(500);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCMedium:
m_rxa->agc->setMode(3);
m_rxa->agc->setAttack(2); // SetRXAAGCAttack(id, 2);
m_rxa->agc->setHang(0); // SetRXAAGCHang(id, 0);
m_rxa->agc->setDecay(250); // SetRXAAGCDecay(id, 250);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, 100);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(0);
m_rxa->agc->setDecay(250);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCFast:
m_rxa->agc->setMode(4);
m_rxa->agc->setAttack(2); // SetRXAAGCAttack(id, 2);
m_rxa->agc->setHang(0); // SetRXAAGCHang(id, 0);
m_rxa->agc->setDecay(50); // SetRXAAGCDecay(id, 50);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, 100);
m_rxa->agc->setAttack(2);
m_rxa->agc->setHang(0);
m_rxa->agc->setDecay(50);
m_rxa->agc->setHangThreshold(settings.m_agcHangThreshold);
break;
}
}

View File

@ -55,13 +55,14 @@ public:
bool getAudioActive() const { return m_audioActive; }
void setChannel(ChannelAPI *channel) { m_channel = channel; }
void setAudioFifoLabel(const QString& label) { m_audioFifo.setLabel(label); }
void getMagSqLevels(double& avg, double& peak, int& nbSamples);
void getMagSqLevels(double& avg, double& peak, int& nbSamples) const;
private:
class SpectrumProbe : public WDSP::BufferProbe
{
public:
SpectrumProbe(SampleVector& sampleVector);
explicit SpectrumProbe(SampleVector& sampleVector);
virtual ~SpectrumProbe() = default;
virtual void proceed(const float *in, int nbSamples);
void setSpanLog2(int spanLog2);
void setDSB(bool dsb) { m_dsb = dsb; }
@ -102,8 +103,6 @@ private:
Interpolator m_interpolator;
Real m_interpolatorDistance;
Real m_interpolatorDistanceRemain;
// fftfilt* SSBFilter;
// fftfilt* DSBFilter;
SpectrumVis* m_spectrumSink;
SampleVector m_sampleBuffer;
@ -123,7 +122,7 @@ private:
static const int m_wdspSampleRate;
static const int m_wdspBufSize;
void processOneSample(Complex &ci);
void processOneSample(const Complex &ci);
};
#endif // INCLUDE_SSBDEMODSINK_H

View File

@ -25,6 +25,7 @@ set(wdsp_SOURCES
dsphp.cpp
emnr.cpp
emph.cpp
emphp.cpp
eqp.cpp
fcurve.cpp
fir.cpp
@ -93,6 +94,7 @@ set(wdsp_HEADERS
dsphp.hpp
emnr.hpp
emph.hpp
emphp.hpp
eqp.hpp
fcurve.hpp
fir.hpp

View File

@ -55,6 +55,7 @@ warren@wpratt.com
#include "nob.hpp"
#include "speak.hpp"
#include "mpeak.hpp"
#include "fir.hpp"
namespace WDSP {
@ -71,7 +72,7 @@ RXA::RXA(
)
{
mode = RXA::RXA_LSB;
std::fill(meter, meter + RXA::RXA_METERTYPE_LAST, 0);
std::fill(meter.begin(), meter.end(), 0);
// Noise blanker (ANB or "NB")
anb = new ANB(
@ -127,17 +128,17 @@ RXA::RXA(
// Input meter - ADC
adcmeter = new METER(
0, // run
0, // optional pointer to another 'run'
nullptr, // optional pointer to another 'run'
dsp_size, // size
midbuff, // pointer to buffer
dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
meter, // result vector
meter.data(), // result vector
RXA_ADC_AV, // index for average value
RXA_ADC_PK, // index for peak value
-1, // index for gain value - disabled
0); // pointer for gain computation
nullptr); // pointer for gain computation
// Notched bandpass section
@ -200,17 +201,17 @@ RXA::RXA(
// S-meter
smeter = new METER(
1, // run
0, // optional pointer to another 'run'
nullptr, // optional pointer to another 'run'
dsp_size, // size
midbuff, // pointer to buffer
dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
meter, // result vector
meter.data(), // result vector
RXA_S_AV, // index for average value
RXA_S_PK, // index for peak value
-1, // index for gain value - disabled
0); // pointer for gain computation
nullptr); // pointer for gain computation
// AM squelch capture (for other modes than FM)
amsq = new AMSQ(
@ -416,13 +417,13 @@ RXA::RXA(
// AGC meter
agcmeter = new METER(
0, // run
0, // optional pointer to another 'run'
nullptr, // optional pointer to another 'run'
dsp_size, // size
midbuff, // pointer to buffer
dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
meter, // result vector
meter.data(), // result vector
RXA_AGC_AV, // index for average value
RXA_AGC_PK, // index for peak value
RXA_AGC_GAIN, // index for gain value
@ -903,7 +904,7 @@ void RXA::bp1Set ()
a->run = 0;
if (!old && a->run)
a->flush();
FIRCORE::setUpdate_fircore (a->fircore);
a->fircore->setUpdate();
}
void RXA::bpsnbaCheck(int _mode, int _notch_run)
@ -988,7 +989,7 @@ void RXA::bpsnbaSet()
default:
break;
}
FIRCORE::setUpdate_fircore (a->bpsnba->fircore);
a->bpsnba->fircore->setUpdate();
}
void RXA::updateNBPFiltersLightWeight()
@ -1004,7 +1005,7 @@ void RXA::updateNBPFilters()
if (a->fnfrun)
{
a->calc_impulse();
FIRCORE::setImpulse_fircore (a->fircore, a->impulse, 1);
a->fircore->setImpulse(a->impulse, 1);
delete[] (a->impulse);
}
if (b->bpsnba->fnfrun)
@ -1025,7 +1026,7 @@ int RXA::nbpAddNotch(int _notch, double _fcenter, double _fwidth, int _active)
return rval;
}
int RXA::nbpGetNotch(int _notch, double* _fcenter, double* _fwidth, int* _active)
int RXA::nbpGetNotch(int _notch, double* _fcenter, double* _fwidth, int* _active) const
{
NOTCHDB *a = ndb;
int rval = a->getNotch(_notch, _fcenter, _fwidth, _active);
@ -1056,7 +1057,7 @@ int RXA::nbpEditNotch(int _notch, double _fcenter, double _fwidth, int _active)
return rval;
}
void RXA::nbpGetNumNotches(int* _nnotches)
void RXA::nbpGetNumNotches(int* _nnotches) const
{
const NOTCHDB *a = ndb;
a->getNumNotches(_nnotches);
@ -1096,10 +1097,10 @@ void RXA::nbpSetNotchesRun(int _run)
b->fnfrun = a->master_run;
bpsnbaCheck(mode, _run);
b->calc_impulse(); // recalc nbp impulse response
FIRCORE::setImpulse_fircore (b->fircore, b->impulse, 0); // calculate new filter masks
b->fircore->setImpulse(b->impulse, 0); // calculate new filter masks
delete[] (b->impulse);
bpsnbaSet();
FIRCORE::setUpdate_fircore (b->fircore); // apply new filter masks
b->fircore->setUpdate(); // apply new filter masks
}
}
@ -1110,15 +1111,15 @@ void RXA::nbpSetWindow(int _wintype)
a = nbp0;
b = bpsnba;
if ((a->wintype != _wintype))
if (a->wintype != _wintype)
{
a->wintype = _wintype;
a->calc_impulse();
FIRCORE::setImpulse_fircore (a->fircore, a->impulse, 1);
a->fircore->setImpulse(a->impulse, 1);
delete[] (a->impulse);
}
if ((b->wintype != _wintype))
if (b->wintype != _wintype)
{
b->wintype = _wintype;
b->recalc_bpsnba_filter(1);
@ -1132,15 +1133,15 @@ void RXA::nbpSetAutoIncrease(int _autoincr)
a = nbp0;
b = bpsnba;
if ((a->autoincr != _autoincr))
if (a->autoincr != _autoincr)
{
a->autoincr = _autoincr;
a->calc_impulse();
FIRCORE::setImpulse_fircore (a->fircore, a->impulse, 1);
a->fircore->setImpulse(a->impulse, 1);
delete[] (a->impulse);
}
if ((b->autoincr != _autoincr))
if (b->autoincr != _autoincr)
{
b->autoincr = _autoincr;
b->recalc_bpsnba_filter(1);
@ -1260,7 +1261,7 @@ void RXA::setEMNRPosition(int _position)
bp1->position = _position;
}
void RXA::getAGCThresh(double *_thresh, double _size, double _rate)
void RXA::getAGCThresh(double *_thresh, double _size, double _rate) const
//for line on bandscope.
{
double noise_offset;

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_rxa_h
#define wdsp_rxa_h
#include <array>
#include "comm.hpp"
#include "unit.hpp"
#include "export.h"
@ -95,7 +97,7 @@ public:
};
int mode;
double meter[RXA_METERTYPE_LAST];
std::array<double, RXA_METERTYPE_LAST> meter;
ANB *anb;
NOB *nob;
@ -119,7 +121,6 @@ public:
WCPAGC *agc;
METER *agcmeter;
BANDPASS *bp1;
BPS *bps1;
SIPHON *sip1;
CBL *cbl;
SPEAK *speak;
@ -136,7 +137,7 @@ public:
);
RXA(const RXA&) = delete;
RXA& operator=(const RXA& other) = delete;
~RXA();
virtual ~RXA();
void flush();
void execute();
@ -161,10 +162,10 @@ public:
void updateNBPFiltersLightWeight();
void updateNBPFilters();
int nbpAddNotch(int notch, double fcenter, double fwidth, int active);
int nbpGetNotch(int notch, double* fcenter, double* fwidth, int* active);
int nbpGetNotch(int notch, double* fcenter, double* fwidth, int* active) const;
int nbpDeleteNotch(int notch);
int nbpEditNotch(int notch, double fcenter, double fwidth, int active);
void nbpGetNumNotches(int* nnotches);
void nbpGetNumNotches(int* nnotches) const;
void nbpSetTuneFrequency(double tunefreq);
void nbpSetShiftFrequency(double shift);
void nbpSetNotchesRun(int run);
@ -185,7 +186,8 @@ public:
void setEMNRPosition(int position);
// WCPAGC
void setAGCThresh(double thresh, double size, double rate);
void getAGCThresh(double *thresh, double size, double rate);
void getAGCThresh(double *thresh, double size, double rate) const;
// Collectives
void setPassband(float f_low, float f_high);
void setNC(int nc);

View File

@ -39,7 +39,7 @@ warren@wpratt.com
#include "bps.hpp"
#include "osctrl.hpp"
#include "wcpAGC.hpp"
#include "emph.hpp"
#include "emphp.hpp"
#include "fmmod.hpp"
#include "siphon.hpp"
#include "gen.hpp"
@ -171,7 +171,7 @@ TXA::TXA(
-1, // index for gain value
nullptr); // pointer for gain computation
preemph = EMPHP::create_emphp (
preemph = new EMPHP(
0, // run
1, // position
dsp_size, // size
@ -224,10 +224,10 @@ TXA::TXA(
&leveler->gain); // pointer for gain computation
{
std::array<float, 5> default_F = {200.0, 1000.0, 2000.0, 3000.0, 4000.0};
std::array<float, 5> default_G = { 0.0, 5.0, 10.0, 10.0, 5.0};
std::array<float, 5> default_E = { 7.0, 7.0, 7.0, 7.0, 7.0};
cfcomp = CFCOMP::create_cfcomp(
std::array<double, 5> default_F = {200.0, 1000.0, 2000.0, 3000.0, 4000.0};
std::array<double, 5> default_G = { 0.0, 5.0, 10.0, 10.0, 5.0};
std::array<double, 5> default_E = { 7.0, 7.0, 7.0, 7.0, 7.0};
cfcomp = new CFCOMP(
0, // run
0, // position
0, // post-equalizer run
@ -277,7 +277,7 @@ TXA::TXA(
1, // wintype
2.0); // gain
compressor = COMPRESSOR::create_compressor (
compressor = new COMPRESSOR(
0, // run - OFF by default
dsp_size, // size
midbuff, // pointer to input buffer
@ -298,7 +298,7 @@ TXA::TXA(
1, // wintype
2.0); // gain
osctrl = OSCTRL::create_osctrl (
osctrl = new OSCTRL(
0, // run
dsp_size, // size
midbuff, // input buffer
@ -359,7 +359,7 @@ TXA::TXA(
2.000, // hang_thresh
0.100); // tau_hang_decay
ammod = AMMOD::create_ammod (
ammod = new AMMOD(
0, // run - OFF by default
0, // mode: 0=>AM, 1=>DSB
dsp_size, // size
@ -368,7 +368,7 @@ TXA::TXA(
0.5); // carrier level
fmmod = FMMOD::create_fmmod (
fmmod = new FMMOD(
0, // run - OFF by default
dsp_size, // size
midbuff, // pointer to input buffer
@ -392,15 +392,14 @@ TXA::TXA(
dsp_rate, // sample rate
0); // mode
uslew = USLEW::create_uslew (
this,
uslew = new USLEW(
&upslew, // pointer to channel upslew flag
dsp_size, // buffer size
midbuff, // input buffer
midbuff, // output buffer
(float) dsp_rate, // sample rate
(double) dsp_rate, // sample rate
0.000, // delay time
0.005f); // upslew time
0.005); // upslew time
alcmeter = new METER(
1, // run
@ -446,17 +445,17 @@ TXA::TXA(
// 256, // pin samples
// 0.9); // alpha
iqc.p0 = iqc.p1 = IQC::create_iqc (
iqc.p0 = iqc.p1 = new IQC(
0, // run
dsp_size, // size
midbuff, // input buffer
midbuff, // output buffer
(float)dsp_rate, // sample rate
(double) dsp_rate, // sample rate
16, // ints
0.005f, // changeover time
0.005, // changeover time
256); // spi
cfir = CFIR::create_cfir(
cfir = new CFIR(
0, // run
dsp_size, // size
std::max(2048, dsp_size), // number of filter coefficients
@ -507,26 +506,26 @@ TXA::~TXA()
// in reverse order, free each item we created
delete outmeter;
delete rsmpout;
CFIR::destroy_cfir(cfir);
IQC::destroy_iqc (iqc.p0);
delete cfir;
delete iqc.p0;
delete sip1;
delete alcmeter;
USLEW::destroy_uslew (uslew);
delete uslew;
delete gen1;
FMMOD::destroy_fmmod (fmmod);
AMMOD::destroy_ammod (ammod);
delete fmmod;
delete ammod;
delete alc;
delete compmeter;
delete bp2;
OSCTRL::destroy_osctrl (osctrl);
delete osctrl;
delete bp1;
COMPRESSOR::destroy_compressor (compressor);
delete compressor;
delete bp0;
delete cfcmeter;
CFCOMP::destroy_cfcomp (cfcomp);
delete cfcomp;
delete lvlrmeter;
delete leveler;
EMPHP::destroy_emphp (preemph);
delete preemph;
delete eqmeter;
delete eqp;
delete amsq;
@ -548,26 +547,26 @@ void TXA::flush()
amsq->flush ();
eqp->flush();
eqmeter->flush ();
EMPHP::flush_emphp (preemph);
preemph->flush();
leveler->flush();
lvlrmeter->flush ();
CFCOMP::flush_cfcomp (cfcomp);
cfcomp->flush();
cfcmeter->flush ();
bp0->flush ();
COMPRESSOR::flush_compressor (compressor);
compressor->flush();
bp1->flush ();
OSCTRL::flush_osctrl (osctrl);
osctrl->flush();
bp2->flush ();
compmeter->flush ();
alc->flush ();
AMMOD::flush_ammod (ammod);
FMMOD::flush_fmmod (fmmod);
ammod->flush();
fmmod->flush();
gen1->flush();
USLEW::flush_uslew (uslew);
uslew->flush();
alcmeter->flush ();
sip1->flush();
IQC::flush_iqc (iqc.p0);
CFIR::flush_cfir(cfir);
iqc.p0->flush();
cfir->flush();
rsmpout->flush();
outmeter->flush ();
}
@ -583,27 +582,27 @@ void TXA::execute()
amsq->execute (); // downward expander action
eqp->execute (); // pre-EQ
eqmeter->execute (); // EQ meter
EMPHP::xemphp (preemph, 0); // FM pre-emphasis (first option)
preemph->execute(0); // FM pre-emphasis (first option)
leveler->execute (); // Leveler
lvlrmeter->execute (); // Leveler Meter
CFCOMP::xcfcomp (cfcomp, 0); // Continuous Frequency Compressor with post-EQ
cfcomp->execute(0); // Continuous Frequency Compressor with post-EQ
cfcmeter->execute (); // CFC+PostEQ Meter
bp0->execute (0); // primary bandpass filter
COMPRESSOR::xcompressor (compressor); // COMP compressor
compressor->execute(); // COMP compressor
bp1->execute (0); // aux bandpass (runs if COMP)
OSCTRL::xosctrl (osctrl); // CESSB Overshoot Control
osctrl->execute(); // CESSB Overshoot Control
bp2->execute (0); // aux bandpass (runs if CESSB)
compmeter->execute (); // COMP meter
alc->execute (); // ALC
AMMOD::xammod (ammod); // AM Modulator
EMPHP::xemphp (preemph, 1); // FM pre-emphasis (second option)
FMMOD::xfmmod (fmmod); // FM Modulator
ammod->execute(); // AM Modulator
preemph->execute(1); // FM pre-emphasis (second option)
fmmod->execute(); // FM Modulator
gen1->execute(); // output signal generator (TUN and Two-tone)
USLEW::xuslew (uslew); // up-slew for AM, FM, and gens
uslew->execute(uslewCheck()); // up-slew for AM, FM, and gens
alcmeter->execute (); // ALC Meter
sip1->execute(0); // siphon data for display
IQC::xiqc (iqc.p0); // PureSignal correction
CFIR::xcfir(cfir); // compensating FIR filter (used Protocol_2 only)
iqc.p0->execute(); // PureSignal correction
cfir->execute(); // compensating FIR filter (used Protocol_2 only)
rsmpout->execute(); // output resampler
outmeter->execute (); // output meter
}
@ -622,7 +621,7 @@ void TXA::setOutputSamplerate(int out_rate)
{
Unit::setBuffersOutputSamplerate(out_rate);
// cfir - needs to know input rate of firmware CIC
CFIR::setOutRate_cfir (cfir, out_rate);
cfir->setOutRate(out_rate);
// output resampler
rsmpout->setBuffers(midbuff, outbuff);
rsmpout->setOutRate(out_rate);
@ -648,26 +647,26 @@ void TXA::setDSPSamplerate(int dsp_rate)
amsq->setSamplerate (dsp_rate);
eqp->setSamplerate (dsp_rate);
eqmeter->setSamplerate (dsp_rate);
EMPHP::setSamplerate_emphp (preemph, dsp_rate);
preemph->setSamplerate(dsp_rate);
leveler->setSamplerate (dsp_rate);
lvlrmeter->setSamplerate (dsp_rate);
CFCOMP::setSamplerate_cfcomp (cfcomp, dsp_rate);
cfcomp->setSamplerate(dsp_rate);
cfcmeter->setSamplerate (dsp_rate);
bp0->setSamplerate (dsp_rate);
COMPRESSOR::setSamplerate_compressor (compressor, dsp_rate);
compressor->setSamplerate(dsp_rate);
bp1->setSamplerate (dsp_rate);
OSCTRL::setSamplerate_osctrl (osctrl, dsp_rate);
osctrl->setSamplerate(dsp_rate);
bp2->setSamplerate (dsp_rate);
compmeter->setSamplerate (dsp_rate);
alc->setSamplerate (dsp_rate);
AMMOD::setSamplerate_ammod (ammod, dsp_rate);
FMMOD::setSamplerate_fmmod (fmmod, dsp_rate);
ammod->setSamplerate(dsp_rate);
fmmod->setSamplerate(dsp_rate);
gen1->setSamplerate(dsp_rate);
USLEW::setSamplerate_uslew (uslew, dsp_rate);
uslew->setSamplerate(dsp_rate);
alcmeter->setSamplerate (dsp_rate);
sip1->setSamplerate (dsp_rate);
IQC::setSamplerate_iqc (iqc.p0, dsp_rate);
CFIR::setSamplerate_cfir (cfir, dsp_rate);
iqc.p0->setSamplerate(dsp_rate);
cfir->setSamplerate(dsp_rate);
// output resampler
rsmpout->setBuffers(midbuff, outbuff);
rsmpout->setInRate(dsp_rate);
@ -698,46 +697,46 @@ void TXA::setDSPBuffsize(int dsp_size)
eqp->setSize (dsp_size);
eqmeter->setBuffers (midbuff);
eqmeter->setSize (dsp_size);
EMPHP::setBuffers_emphp (preemph, midbuff, midbuff);
EMPHP::setSize_emphp (preemph, dsp_size);
preemph->setBuffers(midbuff, midbuff);
preemph->setSize(dsp_size);
leveler->setBuffers(midbuff, midbuff);
leveler->setSize(dsp_size);
lvlrmeter->setBuffers(midbuff);
lvlrmeter->setSize(dsp_size);
CFCOMP::setBuffers_cfcomp (cfcomp, midbuff, midbuff);
CFCOMP::setSize_cfcomp (cfcomp, dsp_size);
cfcomp->setBuffers(midbuff, midbuff);
cfcomp->setSize(dsp_size);
cfcmeter->setBuffers(midbuff);
cfcmeter->setSize(dsp_size);
bp0->setBuffers (midbuff, midbuff);
bp0->setSize (dsp_size);
COMPRESSOR::setBuffers_compressor (compressor, midbuff, midbuff);
COMPRESSOR::setSize_compressor (compressor, dsp_size);
compressor->setBuffers(midbuff, midbuff);
compressor->setSize(dsp_size);
bp1->setBuffers (midbuff, midbuff);
bp1->setSize (dsp_size);
OSCTRL::setBuffers_osctrl (osctrl, midbuff, midbuff);
OSCTRL::setSize_osctrl (osctrl, dsp_size);
osctrl->setBuffers(midbuff, midbuff);
osctrl->setSize(dsp_size);
bp2->setBuffers (midbuff, midbuff);
bp2->setSize (dsp_size);
compmeter->setBuffers(midbuff);
compmeter->setSize(dsp_size);
alc->setBuffers(midbuff, midbuff);
alc->setSize( dsp_size);
AMMOD::setBuffers_ammod (ammod, midbuff, midbuff);
AMMOD::setSize_ammod (ammod, dsp_size);
FMMOD::setBuffers_fmmod (fmmod, midbuff, midbuff);
FMMOD::setSize_fmmod (fmmod, dsp_size);
ammod->setBuffers(midbuff, midbuff);
ammod->setSize(dsp_size);
fmmod->setBuffers(midbuff, midbuff);
fmmod->setSize(dsp_size);
gen1->setBuffers(midbuff, midbuff);
gen1->setSize(dsp_size);
USLEW::setBuffers_uslew (uslew, midbuff, midbuff);
USLEW::setSize_uslew (uslew, dsp_size);
uslew->setBuffers(midbuff, midbuff);
uslew->setSize(dsp_size);
alcmeter->setBuffers (midbuff);
alcmeter->setSize(dsp_size);
sip1->setBuffers (midbuff);
sip1->setSize (dsp_size);
IQC::setBuffers_iqc (iqc.p0, midbuff, midbuff);
IQC::setSize_iqc (iqc.p0, dsp_size);
CFIR::setBuffers_cfir (cfir, midbuff, midbuff);
CFIR::setSize_cfir (cfir, dsp_size);
iqc.p0->IQC::setBuffers(midbuff, midbuff);
iqc.p0->IQC::setSize(dsp_size);
cfir->setBuffers(midbuff, midbuff);
cfir->setSize(dsp_size);
// output resampler
rsmpout->setBuffers(midbuff, outbuff);
rsmpout->setSize(dsp_size);
@ -925,7 +924,7 @@ void TXA::setBandpassNC(int _nc)
1,
a->gain / (double)(2 * a->size)
);
FIRCORE::setNc_fircore (a->fircore, a->nc, impulse);
a->fircore->setNc(a->nc, impulse);
delete[] impulse;
}
@ -943,7 +942,7 @@ void TXA::setBandpassNC(int _nc)
1,
a->gain / (double)(2 * a->size)
);
FIRCORE::setNc_fircore (a->fircore, a->nc, impulse);
a->fircore->setNc(a->nc, impulse);
delete[] impulse;
}
@ -961,7 +960,7 @@ void TXA::setBandpassNC(int _nc)
1,
a->gain / (double)(2 * a->size)
);
FIRCORE::setNc_fircore (a->fircore, a->nc, impulse);
a->fircore->setNc(a->nc, impulse);
delete[] impulse;
}
}
@ -974,7 +973,7 @@ void TXA::setBandpassMP(int _mp)
if (_mp != a->mp)
{
a->mp = _mp;
FIRCORE::setMp_fircore (a->fircore, a->mp);
a->fircore->setMp(a->mp);
}
a = bp1;
@ -982,7 +981,7 @@ void TXA::setBandpassMP(int _mp)
if (_mp != a->mp)
{
a->mp = _mp;
FIRCORE::setMp_fircore (a->fircore, a->mp);
a->fircore->setMp(a->mp);
}
a = bp2;
@ -990,7 +989,7 @@ void TXA::setBandpassMP(int _mp)
if (_mp != a->mp)
{
a->mp = _mp;
FIRCORE::setMp_fircore (a->fircore, a->mp);
a->fircore->setMp(a->mp);
}
}
@ -1005,25 +1004,196 @@ void TXA::setNC(int _nc)
int oldstate = state;
setBandpassNC (_nc);
EMPHP::SetFMEmphNC (*this, _nc);
preemph->setNC (_nc);
eqp->setNC (_nc);
FMMOD::SetFMNC (*this, _nc);
CFIR::SetCFIRNC (*this, _nc);
fmmod->setNC (_nc);
cfir->setNC (_nc);
state = oldstate;
}
void TXA::setMP(int _mp)
{
setBandpassMP (_mp);
EMPHP::SetFMEmphMP (*this, _mp);
preemph->setMP (_mp);
eqp->setMP (_mp);
FMMOD::SetFMMP (*this, _mp);
fmmod->setMP (_mp);
}
void TXA::setFMAFFilter(float _low, float _high)
{
EMPHP::SetFMPreEmphFreqs (*this, _low, _high);
FMMOD::SetFMAFFreqs (*this, _low, _high);
preemph->setFreqs (_low, _high);
fmmod->setAFFreqs (_low, _high);
}
void TXA::SetBPSRun (TXA& txa, int _run)
{
txa.bp1->run = _run;
}
void TXA::SetBPSFreqs (TXA& txa, double _f_low, double _f_high)
{
float* impulse;
BPS *a;
a = txa.bps0;
if ((_f_low != a->f_low) || (_f_high != a->f_high))
{
a->f_low = _f_low;
a->f_high = _f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, _f_low, _f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps1;
if ((_f_low != a->f_low) || (_f_high != a->f_high))
{
a->f_low = _f_low;
a->f_high = _f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, _f_low, _f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps2;
if ((_f_low != a->f_low) || (_f_high != a->f_high))
{
a->f_low = _f_low;
a->f_high = _f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, _f_low, _f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
}
void TXA::SetBPSWindow (TXA& txa, int _wintype)
{
float* impulse;
BPS *a;
a = txa.bps0;
if (a->wintype != _wintype)
{
a->wintype = _wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps1;
if (a->wintype != _wintype)
{
a->wintype = _wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] impulse;
}
a = txa.bps2;
if (a->wintype != _wintype)
{
a->wintype = _wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass (a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] impulse;
}
}
void TXA::SetCompressorRun (TXA& txa, int _run)
{
if (txa.compressor->run != _run)
{
txa.compressor->run = _run;
txa.setupBPFilters();
}
}
void TXA::SetosctrlRun (TXA& txa, int run)
{
if (txa.osctrl->run != run)
{
txa.osctrl->run = run;
txa.setupBPFilters();
}
}
void TXA::GetiqcValues (TXA& txa, std::vector<double>& cm, std::vector<double>& cc, std::vector<double>& cs)
{
IQC *a;
a = txa.iqc.p0;
cm.resize(a->ints * 4);
cc.resize(a->ints * 4);
cs.resize(a->ints * 4);
std::copy(a->cm[a->cset].begin(), a->cm[a->cset].begin() + a->ints * 4, cm.begin());
std::copy(a->cc[a->cset].begin(), a->cc[a->cset].begin() + a->ints * 4, cc.begin());
std::copy(a->cs[a->cset].begin(), a->cs[a->cset].begin() + a->ints * 4, cs.begin());
}
void TXA::SetiqcValues (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs)
{
IQC *a;
a = txa.iqc.p0;
a->cset = 1 - a->cset;
std::copy(cm.begin(), cm.begin() + a->ints * 4, a->cm[a->cset].begin());
std::copy(cc.begin(), cc.begin() + a->ints * 4, a->cc[a->cset].begin());
std::copy(cs.begin(), cs.begin() + a->ints * 4, a->cs[a->cset].begin());
a->state = IQC::IQCSTATE::RUN;
}
void TXA::SetiqcSwap (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs)
{
IQC *a = txa.iqc.p1;
a->cset = 1 - a->cset;
std::copy(cm.begin(), cm.begin() + a->ints * 4, a->cm[a->cset].begin());
std::copy(cc.begin(), cc.begin() + a->ints * 4, a->cc[a->cset].begin());
std::copy(cs.begin(), cs.begin() + a->ints * 4, a->cs[a->cset].begin());
a->busy = 1;
a->state = IQC::IQCSTATE::SWAP;
a->count = 0;
}
void TXA::SetiqcStart (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs)
{
IQC *a = txa.iqc.p1;
a->cset = 0;
std::copy(cm.begin(), cm.begin() + a->ints * 4, a->cm[a->cset].begin());
std::copy(cc.begin(), cc.begin() + a->ints * 4, a->cc[a->cset].begin());
std::copy(cs.begin(), cs.begin() + a->ints * 4, a->cs[a->cset].begin());
a->busy = 1;
a->state = IQC::IQCSTATE::BEGIN;
a->count = 0;
txa.iqc.p1->run = 1;
}
void TXA::SetiqcEnd (TXA& txa)
{
IQC *a = txa.iqc.p1;
a->busy = 1;
a->state = IQC::IQCSTATE::END;
a->count = 0;
txa.iqc.p1->run = 0;
}
void TXA::GetiqcDogCount (TXA& txa, int* count)
{
IQC *a = txa.iqc.p1;
*count = a->dog.count;
}
void TXA::SetiqcDogCount (TXA& txa, int count)
{
IQC *a = txa.iqc.p1;
a->dog.count = count;
}
} // namespace WDSP

View File

@ -172,7 +172,7 @@ public:
);
TXA(const TXA&) = delete;
TXA& operator=(const TXA& other) = delete;
~TXA();
virtual ~TXA();
void flush();
void execute();
@ -190,6 +190,22 @@ public:
void setBandpassFreqs(float f_low, float f_high);
void setBandpassNC(int nc);
void setBandpassMP(int mp);
// BPS
static void SetBPSRun (TXA& txa, int run);
static void SetBPSFreqs (TXA& txa, double low, double high);
static void SetBPSWindow (TXA& txa, int wintype);
// COMPRESSOR
static void SetCompressorRun (TXA& txa, int run);
// OSCTRL
static void SetosctrlRun (TXA& txa, int run);
// IQC
static void GetiqcValues (TXA& txa, std::vector<double>& cm, std::vector<double>& cc, std::vector<double>& cs);
static void SetiqcValues (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs);
static void SetiqcSwap (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs);
static void SetiqcStart (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs);
static void SetiqcEnd (TXA& txa);
static void GetiqcDogCount (TXA& txa, int* count);
static void SetiqcDogCount (TXA& txa, int count);
// Collectives
void setNC(int nc);

View File

@ -53,22 +53,22 @@ AMD::AMD
double _omegaN,
double _tauR,
double _tauI
)
) :
run(_run),
buff_size(_buff_size),
in_buff(_in_buff),
out_buff(_out_buff),
mode(_mode),
sample_rate((double) _sample_rate),
fmin(_fmin),
fmax(_fmax),
zeta(_zeta),
omegaN(_omegaN),
tauR(_tauR),
tauI(_tauI),
sbmode(_sbmode),
levelfade(_levelfade)
{
run = _run;
buff_size = _buff_size;
in_buff = _in_buff;
out_buff = _out_buff;
mode = _mode;
levelfade = _levelfade;
sbmode = _sbmode;
sample_rate = (double) _sample_rate;
fmin = _fmin;
fmax = _fmax;
zeta = _zeta;
omegaN = _omegaN;
tauR = _tauR;
tauI = _tauI;
init();
}

View File

@ -33,72 +33,74 @@ warren@wpratt.com
namespace WDSP {
AMMOD* AMMOD::create_ammod (int run, int mode, int size, float* in, float* out, float c_level)
AMMOD::AMMOD(
int _run,
int _mode,
int _size,
float* _in,
float* _out,
double _c_level
)
{
AMMOD *a = new AMMOD;
a->run = run;
a->mode = mode;
a->size = size;
a->in = in;
a->out = out;
a->c_level = c_level;
a->a_level = 1.0 - a->c_level;
a->mult = 1.0 / sqrt (2.0);
return a;
run = _run;
mode = _mode;
size = _size;
in = _in;
out = _out;
c_level = _c_level;
a_level = 1.0 - c_level;
mult = 1.0 / sqrt (2.0);
}
void AMMOD::destroy_ammod(AMMOD *a)
void AMMOD::flush()
{
delete a;
// Nothing to flush
}
void AMMOD::flush_ammod(AMMOD *)
void AMMOD::execute()
{
}
void AMMOD::xammod(AMMOD *a)
{
if (a->run)
if (run)
{
int i;
switch (a->mode)
switch (mode)
{
case 0: // AM
for (i = 0; i < a->size; i++)
a->out[2 * i + 0] = a->out[2 * i + 1] = a->mult * (a->c_level + a->a_level * a->in[2 * i + 0]);
for (i = 0; i < size; i++)
out[2 * i + 0] = out[2 * i + 1] = (float) (mult * (c_level + a_level * in[2 * i + 0]));
break;
case 1: // DSB
for (i = 0; i < a->size; i++)
a->out[2 * i + 0] = a->out[2 * i + 1] = a->mult * a->in[2 * i + 0];
for (i = 0; i < size; i++)
out[2 * i + 0] = out[2 * i + 1] = (float) (mult * in[2 * i + 0]);
break;
case 2: // SSB w/Carrier
for (i = 0; i < a->size; i++)
for (i = 0; i < size; i++)
{
a->out[2 * i + 0] = a->mult * a->c_level + a->a_level * a->in[2 * i + 0];
a->out[2 * i + 1] = a->mult * a->c_level + a->a_level * a->in[2 * i + 1];
out[2 * i + 0] = (float) (mult * c_level + a_level * in[2 * i + 0]);
out[2 * i + 1] = (float) (mult * c_level + a_level * in[2 * i + 1]);
}
break;
default:
break;
}
}
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (in != out)
std::copy( in, in + size * 2, out);
}
void AMMOD::setBuffers_ammod(AMMOD *a, float* in, float* out)
void AMMOD::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
in = _in;
out = _out;
}
void AMMOD::setSamplerate_ammod(AMMOD *, int)
void AMMOD::setSamplerate(int)
{
// Nothing to do
}
void AMMOD::setSize_ammod(AMMOD *a, int size)
void AMMOD::setSize(int _size)
{
a->size = size;
size = _size;
}
/********************************************************************************************************
@ -107,10 +109,10 @@ void AMMOD::setSize_ammod(AMMOD *a, int size)
* *
********************************************************************************************************/
void AMMOD::SetAMCarrierLevel (TXA& txa, float c_level)
void AMMOD::setAMCarrierLevel(double _c_level)
{
txa.ammod->c_level = c_level;
txa.ammod->a_level = 1.0 - c_level;
c_level = _c_level;
a_level = 1.0 - _c_level;
}
} // namespace WDSP

View File

@ -42,19 +42,29 @@ public:
int size;
float* in;
float* out;
float c_level;
float a_level;
float mult;
double c_level;
double a_level;
double mult;
static AMMOD* create_ammod(int run, int mode, int size, float* in, float* out, float c_level);
static void destroy_ammod (AMMOD *a);
static void flush_ammod (AMMOD *a);
static void xammod (AMMOD *a);
static void setBuffers_ammod (AMMOD *a, float* in, float* out);
static void setSamplerate_ammod (AMMOD *a, int rate);
static void setSize_ammod (AMMOD *a, int size);
AMMOD(
int run,
int mode,
int size,
float* in,
float* out,
double c_level
);
AMMOD(const AMMOD&) = delete;
AMMOD& operator=(const AMMOD& other) = delete;
~AMMOD() = default;
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
static void SetAMCarrierLevel (TXA& txa, float c_level);
void setAMCarrierLevel(double c_level);
};
} // namespace WDSP

View File

@ -81,13 +81,12 @@ ANB::ANB (
hangtime(_hangtime),
advtime(_advtime),
backtau(_backtau),
threshold(_threshold)
threshold(_threshold),
dtime(0),
htime(0),
itime(0),
atime(0)
{
dtime = 0;
htime = 0;
itime = 0;
atime = 0;
if (tau < 0.0) {
tau = 0.0;
} else if (tau > MAX_TAU) {

View File

@ -65,6 +65,7 @@ ANF::ANF(
delay(_delay),
two_mu(_two_mu),
gamma(_gamma),
in_idx(0),
lidx(_lidx),
lidx_min(_lidx_min),
lidx_max(_lidx_max),
@ -73,7 +74,6 @@ ANF::ANF(
lincr(_lincr),
ldecr(_ldecr)
{
in_idx = 0;
std::fill(d.begin(), d.end(), 0);
std::fill(w.begin(), w.end(), 0);
}

View File

@ -75,24 +75,24 @@ BANDPASS::BANDPASS(
1,
gain / (double)(2 * size)
);
fircore = FIRCORE::create_fircore (size, in, out, nc, mp, impulse);
fircore = new FIRCORE(size, in, out, nc, mp, impulse);
delete[] impulse;
}
BANDPASS::~BANDPASS()
{
FIRCORE::destroy_fircore (fircore);
delete (fircore);
}
void BANDPASS::flush()
{
FIRCORE::flush_fircore(fircore);
fircore->flush();
}
void BANDPASS::execute(int pos)
{
if (run && position == pos)
FIRCORE::xfircore(fircore);
fircore->execute();
else if (out != in)
std::copy(in, in + size * 2, out);
}
@ -101,7 +101,7 @@ void BANDPASS::setBuffers(float* _in, float* _out)
{
in = _in;
out = _out;
FIRCORE::setBuffers_fircore(fircore, in, out);
fircore->setBuffers(in, out);
}
void BANDPASS::setSamplerate(int _rate)
@ -116,7 +116,7 @@ void BANDPASS::setSamplerate(int _rate)
1,
gain / (double) (2 * size)
);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
@ -124,7 +124,7 @@ void BANDPASS::setSize(int _size)
{
// NOTE: 'size' must be <= 'nc'
size = _size;
FIRCORE::setSize_fircore (fircore, size);
fircore->setSize(size);
// recalc impulse because scale factor is a function of size
float* impulse = FIR::fir_bandpass (
nc,
@ -135,7 +135,7 @@ void BANDPASS::setSize(int _size)
1,
gain / (double) (2 * size)
);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
@ -151,7 +151,7 @@ void BANDPASS::setGain(double _gain, int _update)
1,
gain / (double) (2 * size)
);
FIRCORE::setImpulse_fircore (fircore, impulse, _update);
fircore->setImpulse(impulse, _update);
delete[] impulse;
}
@ -171,7 +171,7 @@ void BANDPASS::calcBandpassFilter(double _f_low, double _f_high, double _gain)
1,
gain / (double)(2 * size)
);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
}
@ -196,11 +196,11 @@ void BANDPASS::setBandpassFreqs(double _f_low, double _f_high)
gain / (double)(2 * size)
);
FIRCORE::setImpulse_fircore (fircore, impulse, 0);
fircore->setImpulse(impulse, 0);
delete[] impulse;
f_low = _f_low;
f_high = _f_high;
FIRCORE::setUpdate_fircore (fircore);
fircore->setUpdate();
}
}
@ -219,7 +219,7 @@ void BANDPASS::SetBandpassNC(int _nc)
1,
gain / (double)( 2 * size)
);
FIRCORE::setNc_fircore (fircore, nc, impulse);
fircore->setNc(nc, impulse);
delete[] impulse;
}
}
@ -229,7 +229,7 @@ void BANDPASS::SetBandpassMP(int _mp)
if (_mp != mp)
{
mp = _mp;
FIRCORE::setMp_fircore (fircore, mp);
fircore->setMp(mp);
}
}

View File

@ -30,138 +30,102 @@ warren@wpratt.com
namespace WDSP {
BLDR* BLDR::create_builder(int points, int ints)
BLDR::BLDR(int points, int ints)
{
// for the create function, 'points' and 'ints' are the MAXIMUM values that will be encountered
BLDR *a = new BLDR;
a->catxy = new float[2 * points]; // (float*)malloc0(2 * points * sizeof(float));
a->sx = new float[points]; // (float*)malloc0( points * sizeof(float));
a->sy = new float[points]; // (float*)malloc0( points * sizeof(float));
a->h = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->p = new int[ints]; // (int*) malloc0( ints * sizeof(int));
a->np = new int[ints]; // (int*) malloc0( ints * sizeof(int));
a->taa = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tab = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tag = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tad = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tbb = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tbg = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tbd = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tgg = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tgd = new float[ints]; // (float*)malloc0( ints * sizeof(float));
a->tdd = new float[ints]; // (float*)malloc0( ints * sizeof(float));
catxy = new double[2 * points];
sx.resize(points);
sy.resize(points);
h .resize(ints);
p.resize(ints);
np.resize(ints);
taa.resize(ints);
tab.resize(ints);
tag.resize(ints);
tad.resize(ints);
tbb.resize(ints);
tbg.resize(ints);
tbd.resize(ints);
tgg.resize(ints);
tgd.resize(ints);
tdd.resize(ints);
int nsize = 3 * ints + 1;
int intp1 = ints + 1;
int intm1 = ints - 1;
a->A = new float[intp1 * intp1]; // (float*)malloc0(intp1 * intp1 * sizeof(float));
a->B = new float[intp1 * intp1]; // (float*)malloc0(intp1 * intp1 * sizeof(float));
a->C = new float[intp1 * intp1]; // (float*)malloc0(intm1 * intp1 * sizeof(float));
a->D = new float[intp1]; // (float*)malloc0(intp1 * sizeof(float));
a->E = new float[intp1 * intp1]; // (float*)malloc0(intp1 * intp1 * sizeof(float));
a->F = new float[intm1 * intp1]; // (float*)malloc0(intm1 * intp1 * sizeof(float));
a->G = new float[intp1]; // (float*)malloc0(intp1 * sizeof(float));
a->MAT = new float[nsize * nsize]; // (float*)malloc0(nsize * nsize * sizeof(float));
a->RHS = new float[nsize]; // (float*)malloc0(nsize * sizeof(float));
a->SLN = new float[nsize]; // (float*)malloc0(nsize * sizeof(float));
a->z = new float[intp1]; // (float*)malloc0(intp1 * sizeof(float));
a->zp = new float[intp1]; // (float*)malloc0(intp1 * sizeof(float));
a->wrk = new float[nsize]; // (float*)malloc0(nsize * sizeof(float));
a->ipiv = new int[nsize]; // (int*) malloc0(nsize * sizeof(int));
return a;
A .resize(intp1 * intp1);
B .resize(intp1 * intp1);
C .resize(intp1 * intp1);
D .resize(intp1);
E .resize(intp1 * intp1);
F .resize(intm1 * intp1);
G .resize(intp1);
MAT.resize(nsize * nsize);
RHS.resize(nsize);
SLN.resize(nsize);
z .resize(intp1);
zp.resize(intp1);
wrk.resize(nsize);
ipiv.resize(nsize);
}
void BLDR::destroy_builder(BLDR *a)
BLDR::~BLDR()
{
delete[](a->ipiv);
delete[](a->wrk);
delete[](a->catxy);
delete[](a->sx);
delete[](a->sy);
delete[](a->h);
delete[](a->p);
delete[](a->np);
delete[](a->taa);
delete[](a->tab);
delete[](a->tag);
delete[](a->tad);
delete[](a->tbb);
delete[](a->tbg);
delete[](a->tbd);
delete[](a->tgg);
delete[](a->tgd);
delete[](a->tdd);
delete[](a->A);
delete[](a->B);
delete[](a->C);
delete[](a->D);
delete[](a->E);
delete[](a->F);
delete[](a->G);
delete[](a->MAT);
delete[](a->RHS);
delete[](a->SLN);
delete[](a->z);
delete[](a->zp);
delete(a);
delete[]catxy;
}
void BLDR::flush_builder(BLDR *a, int points, int ints)
void BLDR::flush(int points)
{
memset(a->catxy, 0, 2 * points * sizeof(float));
memset(a->sx, 0, points * sizeof(float));
memset(a->sy, 0, points * sizeof(float));
memset(a->h, 0, ints * sizeof(float));
memset(a->p, 0, ints * sizeof(int));
memset(a->np, 0, ints * sizeof(int));
memset(a->taa, 0, ints * sizeof(float));
memset(a->tab, 0, ints * sizeof(float));
memset(a->tag, 0, ints * sizeof(float));
memset(a->tad, 0, ints * sizeof(float));
memset(a->tbb, 0, ints * sizeof(float));
memset(a->tbg, 0, ints * sizeof(float));
memset(a->tbd, 0, ints * sizeof(float));
memset(a->tgg, 0, ints * sizeof(float));
memset(a->tgd, 0, ints * sizeof(float));
memset(a->tdd, 0, ints * sizeof(float));
int nsize = 3 * ints + 1;
int intp1 = ints + 1;
int intm1 = ints - 1;
memset(a->A, 0, intp1 * intp1 * sizeof(float));
memset(a->B, 0, intp1 * intp1 * sizeof(float));
memset(a->C, 0, intm1 * intp1 * sizeof(float));
memset(a->D, 0, intp1 * sizeof(float));
memset(a->E, 0, intp1 * intp1 * sizeof(float));
memset(a->F, 0, intm1 * intp1 * sizeof(float));
memset(a->G, 0, intp1 * sizeof(float));
memset(a->MAT, 0, nsize * nsize * sizeof(float));
memset(a->RHS, 0, nsize * sizeof(float));
memset(a->SLN, 0, nsize * sizeof(float));
memset(a->z, 0, intp1 * sizeof(float));
memset(a->zp, 0, intp1 * sizeof(float));
memset(a->wrk, 0, nsize * sizeof(float));
memset(a->ipiv, 0, nsize * sizeof(int));
memset(catxy, 0, 2 * points * sizeof(double));
std::fill(sx.begin(), sx.end(), 0);
std::fill(sy.begin(), sy.end(), 0);
std::fill(h.begin(), h.end(), 0);
std::fill(p.begin(), p.end(), 0);
std::fill(np.begin(), np.end(), 0);
std::fill(taa.begin(), taa.end(), 0);
std::fill(tab.begin(), tab.end(), 0);
std::fill(tag.begin(), tag.end(), 0);
std::fill(tad.begin(), tad.end(), 0);
std::fill(tbb.begin(), tbb.end(), 0);
std::fill(tbg.begin(), tbg.end(), 0);
std::fill(tbd.begin(), tbd.end(), 0);
std::fill(tgg.begin(), tgg.end(), 0);
std::fill(tgd.begin(), tgd.end(), 0);
std::fill(tdd.begin(), tdd.end(), 0);
std::fill(A.begin(), A.end(), 0);
std::fill(B.begin(), B.end(), 0);
std::fill(C.begin(), C.end(), 0);
std::fill(D.begin(), D.end(), 0);
std::fill(E.begin(), E.end(), 0);
std::fill(F.begin(), F.end(), 0);
std::fill(G.begin(), G.end(), 0);
std::fill(MAT.begin(), MAT.end(), 0);
std::fill(RHS.begin(), RHS.end(), 0);
std::fill(SLN.begin(), SLN.end(), 0);
std::fill(z.begin(), z.end(), 0);
std::fill(zp.begin(), zp.end(), 0);
std::fill(wrk.begin(), wrk.end(), 0);
std::fill(ipiv.begin(), ipiv.end(), 0);
}
int BLDR::fcompare(const void* a, const void* b)
{
if (*(float*)a < *(float*)b)
if (*(double*)a < *(double*)b)
return -1;
else if (*(float*)a == *(float*)b)
else if (*(double*)a == *(double*)b)
return 0;
else
return 1;
}
void BLDR::decomp(int n, float* a, int* piv, int* info, float* wrk)
void BLDR::decomp(int n, std::vector<double>& a, std::vector<int>& piv, int* info, std::vector<double>& wrk)
{
int i, j, k;
int i;
int j;
int t_piv;
float m_row, mt_row, m_col, mt_col;
double m_row;
double mt_row;
double m_col;
double mt_col;
*info = 0;
for (i = 0; i < n; i++)
{
@ -180,7 +144,7 @@ void BLDR::decomp(int n, float* a, int* piv, int* info, float* wrk)
}
wrk[i] = m_row;
}
for (k = 0; k < n - 1; k++)
for (int k = 0; k < n - 1; k++)
{
j = k;
m_col = a[n * piv[k] + k] / wrk[piv[k]];
@ -216,10 +180,11 @@ cleanup:
return;
}
void BLDR::dsolve(int n, float* a, int* piv, float* b, float* x)
void BLDR::dsolve(int n, std::vector<double>& a, std::vector<int>& piv, std::vector<double>& b, std::vector<double>& x)
{
int j, k;
float sum;
int j;
int k;
double sum;
for (k = 0; k < n; k++)
{
@ -238,7 +203,7 @@ void BLDR::dsolve(int n, float* a, int* piv, float* b, float* x)
}
}
void BLDR::cull(int* n, int ints, float* x, float* t, float ptol)
void BLDR::cull(int* n, int ints, std::vector<double>& x, const double* t, double ptol)
{
int k = 0;
int i = *n;
@ -255,28 +220,36 @@ void BLDR::cull(int* n, int ints, float* x, float* t, float ptol)
*n -= k;
}
void BLDR::xbuilder(BLDR *a, int points, float* x, float* y, int ints, float* t, int* info, float* c, float ptol)
void BLDR::execute(int points, const double* x, const double* y, int ints, const double* t, int* info, double* c, double ptol)
{
float u, v, alpha, beta, gamma, delta;
double u;
double v;
double alpha;
double beta;
double gamma;
double delta;
int nsize = 3 * ints + 1;
int intp1 = ints + 1;
int intm1 = ints - 1;
int i, j, k, m;
int i;
int j;
int k;
int m;
int dinfo;
flush_builder(a, points, ints);
flush(points);
for (i = 0; i < points; i++)
{
a->catxy[2 * i + 0] = x[i];
a->catxy[2 * i + 1] = y[i];
catxy[2 * i + 0] = x[i];
catxy[2 * i + 1] = y[i];
}
qsort(a->catxy, points, 2 * sizeof(float), fcompare);
qsort(catxy, points, 2 * sizeof(double), fcompare);
for (i = 0; i < points; i++)
{
a->sx[i] = a->catxy[2 * i + 0];
a->sy[i] = a->catxy[2 * i + 1];
sx[i] = catxy[2 * i + 0];
sy[i] = catxy[2 * i + 1];
}
cull(&points, ints, a->sx, t, ptol);
if (points <= 0 || a->sx[points - 1] > t[ints])
cull(&points, ints, sx, t, ptol);
if (points <= 0 || sx[points - 1] > t[ints])
{
*info = -1000;
goto cleanup;
@ -284,101 +257,101 @@ void BLDR::xbuilder(BLDR *a, int points, float* x, float* y, int ints, float* t,
else *info = 0;
for (j = 0; j < ints; j++)
a->h[j] = t[j + 1] - t[j];
a->p[0] = 0;
h[j] = t[j + 1] - t[j];
p[0] = 0;
j = 0;
for (i = 0; i < points; i++)
{
if (a->sx[i] <= t[j + 1])
a->np[j]++;
if (sx[i] <= t[j + 1])
np[j]++;
else
{
a->p[++j] = i;
while (a->sx[i] > t[j + 1])
a->p[++j] = i;
a->np[j] = 1;
p[++j] = i;
while (sx[i] > t[j + 1])
p[++j] = i;
np[j] = 1;
}
}
for (i = 0; i < ints; i++)
for (j = a->p[i]; j < a->p[i] + a->np[i]; j++)
for (j = p[i]; j < p[i] + np[i]; j++)
{
u = (a->sx[j] - t[i]) / a->h[i];
u = (sx[j] - t[i]) / h[i];
v = u - 1.0;
alpha = (2.0 * u + 1.0) * v * v;
beta = u * u * (1.0 - 2.0 * v);
gamma = a->h[i] * u * v * v;
delta = a->h[i] * u * u * v;
a->taa[i] += alpha * alpha;
a->tab[i] += alpha * beta;
a->tag[i] += alpha * gamma;
a->tad[i] += alpha * delta;
a->tbb[i] += beta * beta;
a->tbg[i] += beta * gamma;
a->tbd[i] += beta * delta;
a->tgg[i] += gamma * gamma;
a->tgd[i] += gamma * delta;
a->tdd[i] += delta * delta;
a->D[i + 0] += 2.0 * a->sy[j] * alpha;
a->D[i + 1] += 2.0 * a->sy[j] * beta;
a->G[i + 0] += 2.0 * a->sy[j] * gamma;
a->G[i + 1] += 2.0 * a->sy[j] * delta;
gamma = h[i] * u * v * v;
delta = h[i] * u * u * v;
taa[i] += alpha * alpha;
tab[i] += alpha * beta;
tag[i] += alpha * gamma;
tad[i] += alpha * delta;
tbb[i] += beta * beta;
tbg[i] += beta * gamma;
tbd[i] += beta * delta;
tgg[i] += gamma * gamma;
tgd[i] += gamma * delta;
tdd[i] += delta * delta;
D[i + 0] += 2.0 * sy[j] * alpha;
D[i + 1] += 2.0 * sy[j] * beta;
G[i + 0] += 2.0 * sy[j] * gamma;
G[i + 1] += 2.0 * sy[j] * delta;
}
for (i = 0; i < ints; i++)
{
a->A[(i + 0) * intp1 + (i + 0)] += 2.0 * a->taa[i];
a->A[(i + 1) * intp1 + (i + 1)] = 2.0 * a->tbb[i];
a->A[(i + 0) * intp1 + (i + 1)] = 2.0 * a->tab[i];
a->A[(i + 1) * intp1 + (i + 0)] = 2.0 * a->tab[i];
a->B[(i + 0) * intp1 + (i + 0)] += 2.0 * a->tag[i];
a->B[(i + 1) * intp1 + (i + 1)] = 2.0 * a->tbd[i];
a->B[(i + 0) * intp1 + (i + 1)] = 2.0 * a->tbg[i];
a->B[(i + 1) * intp1 + (i + 0)] = 2.0 * a->tad[i];
a->E[(i + 0) * intp1 + (i + 0)] += 2.0 * a->tgg[i];
a->E[(i + 1) * intp1 + (i + 1)] = 2.0 * a->tdd[i];
a->E[(i + 0) * intp1 + (i + 1)] = 2.0 * a->tgd[i];
a->E[(i + 1) * intp1 + (i + 0)] = 2.0 * a->tgd[i];
A[(i + 0) * intp1 + (i + 0)] += 2.0 * taa[i];
A[(i + 1) * intp1 + (i + 1)] = 2.0 * tbb[i];
A[(i + 0) * intp1 + (i + 1)] = 2.0 * tab[i];
A[(i + 1) * intp1 + (i + 0)] = 2.0 * tab[i];
B[(i + 0) * intp1 + (i + 0)] += 2.0 * tag[i];
B[(i + 1) * intp1 + (i + 1)] = 2.0 * tbd[i];
B[(i + 0) * intp1 + (i + 1)] = 2.0 * tbg[i];
B[(i + 1) * intp1 + (i + 0)] = 2.0 * tad[i];
E[(i + 0) * intp1 + (i + 0)] += 2.0 * tgg[i];
E[(i + 1) * intp1 + (i + 1)] = 2.0 * tdd[i];
E[(i + 0) * intp1 + (i + 1)] = 2.0 * tgd[i];
E[(i + 1) * intp1 + (i + 0)] = 2.0 * tgd[i];
}
for (i = 0; i < intm1; i++)
{
a->C[i * intp1 + (i + 0)] = +3.0 * a->h[i + 1] / a->h[i];
a->C[i * intp1 + (i + 2)] = -3.0 * a->h[i] / a->h[i + 1];
a->C[i * intp1 + (i + 1)] = -a->C[i * intp1 + (i + 0)] - a->C[i * intp1 + (i + 2)];
a->F[i * intp1 + (i + 0)] = a->h[i + 1];
a->F[i * intp1 + (i + 1)] = 2.0 * (a->h[i] + a->h[i + 1]);
a->F[i * intp1 + (i + 2)] = a->h[i];
C[i * intp1 + (i + 0)] = +3.0 * h[i + 1] / h[i];
C[i * intp1 + (i + 2)] = -3.0 * h[i] / h[i + 1];
C[i * intp1 + (i + 1)] = -C[i * intp1 + (i + 0)] - C[i * intp1 + (i + 2)];
F[i * intp1 + (i + 0)] = h[i + 1];
F[i * intp1 + (i + 1)] = 2.0 * (h[i] + h[i + 1]);
F[i * intp1 + (i + 2)] = h[i];
}
for (i = 0, k = 0; i < intp1; i++, k++)
{
for (j = 0, m = 0; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->A[i * intp1 + j];
MAT[k * nsize + m] = A[i * intp1 + j];
for (j = 0, m = intp1; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->B[j * intp1 + i];
MAT[k * nsize + m] = B[j * intp1 + i];
for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
a->MAT[k * nsize + m] = a->C[j * intp1 + i];
a->RHS[k] = a->D[i];
MAT[k * nsize + m] = C[j * intp1 + i];
RHS[k] = D[i];
}
for (i = 0, k = intp1; i < intp1; i++, k++)
{
for (j = 0, m = 0; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->B[i * intp1 + j];
MAT[k * nsize + m] = B[i * intp1 + j];
for (j = 0, m = intp1; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->E[i * intp1 + j];
MAT[k * nsize + m] = E[i * intp1 + j];
for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
a->MAT[k * nsize + m] = a->F[j * intp1 + i];
a->RHS[k] = a->G[i];
MAT[k * nsize + m] = F[j * intp1 + i];
RHS[k] = G[i];
}
for (i = 0, k = 2 * intp1; i < intm1; i++, k++)
{
for (j = 0, m = 0; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->C[i * intp1 + j];
MAT[k * nsize + m] = C[i * intp1 + j];
for (j = 0, m = intp1; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->F[i * intp1 + j];
MAT[k * nsize + m] = F[i * intp1 + j];
for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
a->MAT[k * nsize + m] = 0.0;
a->RHS[k] = 0.0;
MAT[k * nsize + m] = 0.0;
RHS[k] = 0.0;
}
decomp(nsize, a->MAT, a->ipiv, &dinfo, a->wrk);
dsolve(nsize, a->MAT, a->ipiv, a->RHS, a->SLN);
decomp(nsize, MAT, ipiv, &dinfo, wrk);
dsolve(nsize, MAT, ipiv, RHS, SLN);
if (dinfo != 0)
{
*info = dinfo;
@ -387,15 +360,15 @@ void BLDR::xbuilder(BLDR *a, int points, float* x, float* y, int ints, float* t,
for (i = 0; i <= ints; i++)
{
a->z[i] = a->SLN[i];
a->zp[i] = a->SLN[i + ints + 1];
z[i] = SLN[i];
zp[i] = SLN[i + ints + 1];
}
for (i = 0; i < ints; i++)
{
c[4 * i + 0] = a->z[i];
c[4 * i + 1] = a->zp[i];
c[4 * i + 2] = -3.0 / (a->h[i] * a->h[i]) * (a->z[i] - a->z[i + 1]) - 1.0 / a->h[i] * (2.0 * a->zp[i] + a->zp[i + 1]);
c[4 * i + 3] = 2.0 / (a->h[i] * a->h[i] * a->h[i]) * (a->z[i] - a->z[i + 1]) + 1.0 / (a->h[i] * a->h[i]) * (a->zp[i] + a->zp[i + 1]);
c[4 * i + 0] = z[i];
c[4 * i + 1] = zp[i];
c[4 * i + 2] = -3.0 / (h[i] * h[i]) * (z[i] - z[i + 1]) - 1.0 / h[i] * (2.0 * zp[i] + zp[i + 1]);
c[4 * i + 3] = 2.0 / (h[i] * h[i] * h[i]) * (z[i] - z[i + 1]) + 1.0 / (h[i] * h[i]) * (zp[i] + zp[i + 1]);
}
cleanup:
return;

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_bldr_h
#define wdsp_bldr_h
#include <vector>
#include "export.h"
namespace WDSP {
@ -35,47 +37,50 @@ namespace WDSP {
class WDSP_API BLDR
{
public:
float* catxy;
float* sx;
float* sy;
float* h;
int* p;
int* np;
float* taa;
float* tab;
float* tag;
float* tad;
float* tbb;
float* tbg;
float* tbd;
float* tgg;
float* tgd;
float* tdd;
float* A;
float* B;
float* C;
float* D;
float* E;
float* F;
float* G;
float* MAT;
float* RHS;
float* SLN;
float* z;
float* zp;
float* wrk;
int* ipiv;
double* catxy;
std::vector<double> sx;
std::vector<double> sy;
std::vector<double> h;
std::vector<int> p;
std::vector<int> np;
std::vector<double> taa;
std::vector<double> tab;
std::vector<double> tag;
std::vector<double> tad;
std::vector<double> tbb;
std::vector<double> tbg;
std::vector<double> tbd;
std::vector<double> tgg;
std::vector<double> tgd;
std::vector<double> tdd;
std::vector<double> A;
std::vector<double> B;
std::vector<double> C;
std::vector<double> D;
std::vector<double> E;
std::vector<double> F;
std::vector<double> G;
std::vector<double> MAT;
std::vector<double> RHS;
std::vector<double> SLN;
std::vector<double> z;
std::vector<double> zp;
std::vector<double> wrk;
std::vector<int> ipiv;
static BLDR* create_builder(int points, int ints);
static void destroy_builder(BLDR *a);
static void flush_builder(BLDR *a, int points, int ints);
static void xbuilder(BLDR *a, int points, float* x, float* y, int ints, float* t, int* info, float* c, float ptol);
BLDR(int points, int ints);
BLDR(const BLDR&) = delete;
BLDR& operator=(const BLDR& other) = delete;
~BLDR();
void flush(int points);
void execute(int points, const double* x, const double* y, int ints, const double* t, int* info, double* c, double ptol);
private:
static int fcompare(const void* a, const void* b);
static void decomp(int n, float* a, int* piv, int* info, float* wrk);
static void dsolve(int n, float* a, int* piv, float* b, float* x);
static void cull(int* n, int ints, float* x, float* t, float ptol);
static void decomp(int n, std::vector<double>& a, std::vector<int>& piv, int* info, std::vector<double>& wrk);
static void dsolve(int n, std::vector<double>& a, std::vector<int>& piv, std::vector<double>& b, std::vector<double>& x);
static void cull(int* n, int ints, std::vector<double>& x, const double* t, double ptol);
};
} // namespace WDSP

View File

@ -40,116 +40,116 @@ namespace WDSP {
* *
********************************************************************************************************/
void BPS::calc_bps (BPS *a)
void BPS::calc()
{
float* impulse;
a->infilt = new float[2 * a->size * 2];
a->product = new float[2 * a->size * 2];
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults(2 * a->size, impulse);
a->CFor = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->infilt, (fftwf_complex *)a->product, FFTW_FORWARD, FFTW_PATIENT);
a->CRev = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->product, (fftwf_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT);
delete[](impulse);
infilt.resize(2 * size * 2);
product.resize(2 * size * 2);
impulse = FIR::fir_bandpass(size + 1, f_low, f_high, samplerate, wintype, 1, 1.0 / (float)(2 * size));
mults = FIR::fftcv_mults(2 * size, impulse);
CFor = fftwf_plan_dft_1d(2 * size, (fftwf_complex *) infilt.data(), (fftwf_complex *) product.data(), FFTW_FORWARD, FFTW_PATIENT);
CRev = fftwf_plan_dft_1d(2 * size, (fftwf_complex *) product.data(), (fftwf_complex *) out, FFTW_BACKWARD, FFTW_PATIENT);
delete[]impulse;
}
void BPS::decalc_bps (BPS *a)
void BPS::decalc()
{
fftwf_destroy_plan(a->CRev);
fftwf_destroy_plan(a->CFor);
delete[] (a->mults);
delete[] (a->product);
delete[] (a->infilt);
fftwf_destroy_plan(CRev);
fftwf_destroy_plan(CFor);
delete[] mults;
}
BPS* BPS::create_bps (
int run,
int position,
int size,
float* in,
float* out,
float f_low,
float f_high,
int samplerate,
int wintype,
float gain
)
BPS::BPS(
int _run,
int _position,
int _size,
float* _in,
float* _out,
double _f_low,
double _f_high,
int _samplerate,
int _wintype,
double _gain
) :
run(_run),
position(_position),
size(_size),
in(_in),
out(_out),
f_low(_f_low),
f_high(_f_high),
samplerate((double) _samplerate),
wintype(_wintype),
gain(_gain)
{
BPS *a = new BPS;
a->run = run;
a->position = position;
a->size = size;
a->samplerate = (float)samplerate;
a->wintype = wintype;
a->gain = gain;
a->in = in;
a->out = out;
a->f_low = f_low;
a->f_high = f_high;
calc_bps (a);
return a;
calc();
}
void BPS::destroy_bps (BPS *a)
BPS::~BPS()
{
decalc_bps (a);
delete a;
decalc();
}
void BPS::flush_bps (BPS *a)
void BPS::flush()
{
std::fill(a->infilt, a->infilt + 2 * a->size * 2, 0);
std::fill(infilt.begin(), infilt.end(), 0);
}
void BPS::xbps (BPS *a, int pos)
void BPS::execute(int pos)
{
int i;
float I, Q;
if (a->run && pos == a->position)
double I;
double Q;
if (run && pos == position)
{
std::copy(a->in, a->in + a->size * 2, &(a->infilt[2 * a->size]));
fftwf_execute (a->CFor);
for (i = 0; i < 2 * a->size; i++)
std::copy(in, in + size * 2, &(infilt[2 * size]));
fftwf_execute (CFor);
for (int i = 0; i < 2 * size; i++)
{
I = a->gain * a->product[2 * i + 0];
Q = a->gain * a->product[2 * i + 1];
a->product[2 * i + 0] = I * a->mults[2 * i + 0] - Q * a->mults[2 * i + 1];
a->product[2 * i + 1] = I * a->mults[2 * i + 1] + Q * a->mults[2 * i + 0];
I = gain * product[2 * i + 0];
Q = gain * product[2 * i + 1];
product[2 * i + 0] = (float) (I * mults[2 * i + 0] - Q * mults[2 * i + 1]);
product[2 * i + 1] = (float) (I * mults[2 * i + 1] + Q * mults[2 * i + 0]);
}
fftwf_execute (a->CRev);
std::copy(&(a->infilt[2 * a->size]), &(a->infilt[2 * a->size]) + a->size * 2, a->infilt);
fftwf_execute (CRev);
std::copy(&(infilt[2 * size]), &(infilt[2 * size]) + size * 2, infilt.begin());
}
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (in != out)
std::copy( in, in + size * 2, out);
}
void BPS::setBuffers_bps (BPS *a, float* in, float* out)
void BPS::setBuffers(float* _in, float* _out)
{
decalc_bps (a);
a->in = in;
a->out = out;
calc_bps (a);
decalc();
in = _in;
out = _out;
calc();
}
void BPS::setSamplerate_bps (BPS *a, int rate)
void BPS::setSamplerate(int rate)
{
decalc_bps (a);
a->samplerate = rate;
calc_bps (a);
decalc();
samplerate = rate;
calc();
}
void BPS::setSize_bps (BPS *a, int size)
void BPS::setSize(int _size)
{
decalc_bps (a);
a->size = size;
calc_bps (a);
decalc();
size = _size;
calc();
}
void BPS::setFreqs_bps (BPS *a, float f_low, float f_high)
void BPS::setFreqs(double _f_low, double _f_high)
{
decalc_bps (a);
a->f_low = f_low;
a->f_high = f_high;
calc_bps (a);
decalc();
f_low = _f_low;
f_high = _f_high;
calc();
}
void BPS::setRun(int _run)
{
run = _run;
}
/********************************************************************************************************
@ -158,132 +158,4 @@ void BPS::setFreqs_bps (BPS *a, float f_low, float f_high)
* *
********************************************************************************************************/
void BPS::SetBPSRun (RXA& rxa, int run)
{
rxa.bp1->run = run;
}
void BPS::SetBPSFreqs (RXA& rxa, float f_low, float f_high)
{
float* impulse;
BPS *a1;
a1 = rxa.bps1;
if ((f_low != a1->f_low) || (f_high != a1->f_high))
{
a1->f_low = f_low;
a1->f_high = f_high;
delete[] (a1->mults);
impulse = FIR::fir_bandpass(a1->size + 1, f_low, f_high, a1->samplerate, a1->wintype, 1, 1.0 / (float)(2 * a1->size));
a1->mults = FIR::fftcv_mults (2 * a1->size, impulse);
delete[] (impulse);
}
}
void BPS::SetBPSWindow (RXA& rxa, int wintype)
{
float* impulse;
BPS *a1;
a1 = rxa.bps1;
if ((a1->wintype != wintype))
{
a1->wintype = wintype;
delete[] (a1->mults);
impulse = FIR::fir_bandpass(a1->size + 1, a1->f_low, a1->f_high, a1->samplerate, a1->wintype, 1, 1.0 / (float)(2 * a1->size));
a1->mults = FIR::fftcv_mults (2 * a1->size, impulse);
delete[] (impulse);
}
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
// UNCOMMENT properties when pointers in place in txa
void BPS::SetBPSRun (TXA& txa, int run)
{
txa.bp1->run = run;
}
void BPS::SetBPSFreqs (TXA& txa, float f_low, float f_high)
{
float* impulse;
BPS *a;
a = txa.bps0;
if ((f_low != a->f_low) || (f_high != a->f_high))
{
a->f_low = f_low;
a->f_high = f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, f_low, f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps1;
if ((f_low != a->f_low) || (f_high != a->f_high))
{
a->f_low = f_low;
a->f_high = f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, f_low, f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps2;
if ((f_low != a->f_low) || (f_high != a->f_high))
{
a->f_low = f_low;
a->f_high = f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, f_low, f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
}
void BPS::SetBPSWindow (TXA& txa, int wintype)
{
float* impulse;
BPS *a;
a = txa.bps0;
if (a->wintype != wintype)
{
a->wintype = wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps1;
if (a->wintype != wintype)
{
a->wintype = wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps2;
if (a->wintype != wintype)
{
a->wintype = wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass (a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
}
} // namespace WDSP

View File

@ -34,6 +34,8 @@ warren@wpratt.com
#ifndef wdsp_bps_h
#define wdsp_bps_h
#include <vector>
#include "fftw3.h"
#include "export.h"
@ -50,48 +52,44 @@ public:
int size;
float* in;
float* out;
float f_low;
float f_high;
float* infilt;
float* product;
double f_low;
double f_high;
std::vector<float> infilt;
std::vector<float> product;
float* mults;
float samplerate;
double samplerate;
int wintype;
float gain;
double gain;
fftwf_plan CFor;
fftwf_plan CRev;
static BPS* create_bps (
BPS(
int run,
int position,
int size,
float* in,
float* out,
float f_low,
float f_high,
double f_low,
double f_high,
int samplerate,
int wintype,
float gain
double gain
);
static void destroy_bps (BPS *a);
static void flush_bps (BPS *a);
static void xbps (BPS *a, int pos);
static void setBuffers_bps (BPS *a, float* in, float* out);
static void setSamplerate_bps (BPS *a, int rate);
static void setSize_bps (BPS *a, int size);
static void setFreqs_bps (BPS *a, float f_low, float f_high);
// RXA Prototypes
static void SetBPSRun (RXA& rxa, int run);
static void SetBPSFreqs (RXA& rxa, float low, float high);
static void SetBPSWindow (RXA& rxa, int wintype);
// TXA Prototypes
static void SetBPSRun (TXA& txa, int run);
static void SetBPSFreqs (TXA& txa, float low, float high);
static void SetBPSWindow (TXA& txa, int wintype);
BPS(const BPS&) = delete;
BPS& operator=(const BPS& other) = delete;
~BPS();
void flush();
void execute(int pos);
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
void setFreqs(double f_low, double f_high);
void setRun(int run);
private:
static void calc_bps (BPS *a);
static void decalc_bps (BPS *a);
void calc();
void decalc();
};
} // namespace WDSP

View File

@ -176,7 +176,7 @@ void BPSNBA::recalc_bpsnba_filter(int update)
b->gain = gain;
b->autoincr = autoincr;
b->calc_impulse();
FIRCORE::setImpulse_fircore (b->fircore, b->impulse, update);
b->fircore->setImpulse(b->impulse, update);
delete[] (b->impulse);
}

View File

@ -38,7 +38,14 @@ namespace WDSP {
void BQBP::calc()
{
double f0, w0, bw, q, sn, cs, c, den;
double f0;
double w0;
double bw;
double q;
double sn;
double cs;
double c;
double den;
bw = f_high - f_low;
f0 = (f_high + f_low) / 2.0;
@ -99,15 +106,13 @@ void BQBP::execute()
{
if (run)
{
int i, j, n;
for (i = 0; i < size; i++)
for (int i = 0; i < size; i++)
{
for (j = 0; j < 2; j++)
for (int j = 0; j < 2; j++)
{
x0[j] = gain * in[2 * i + j];
for (n = 0; n < nstages; n++)
for (int n = 0; n < nstages; n++)
{
if (n > 0)
x0[2 * n + j] = y0[2 * (n - 1) + j];
@ -123,7 +128,7 @@ void BQBP::execute()
x1[2 * n + j] = x0[2 * n + j];
}
out[2 * i + j] = y0[2 * (nstages - 1) + j];
out[2 * i + j] = (float) y0[2 * (nstages - 1) + j];
}
}
}

View File

@ -38,9 +38,12 @@ namespace WDSP {
void BQLP::calc()
{
double w0, cs, c, den;
double w0;
double cs;
double c;
double den;
w0 = TWOPI * fc / (double)rate;
w0 = TWOPI * fc / rate;
cs = cos(w0);
c = sin(w0) / (2.0 * Q);
den = 1.0 + c;
@ -95,15 +98,14 @@ void BQLP::execute()
{
if (run)
{
int i, j, n;
for (i = 0; i < size; i++)
for (int i = 0; i < size; i++)
{
for (j = 0; j < 2; j++)
for (int j = 0; j < 2; j++)
{
x0[j] = gain * in[2 * i + j];
for (n = 0; n < nstages; n++)
for (int n = 0; n < nstages; n++)
{
if (n > 0)
x0[2 * n + j] = y0[2 * (n - 1) + j];
@ -118,7 +120,7 @@ void BQLP::execute()
x1[2 * n + j] = x0[2 * n + j];
}
out[2 * i + j] = y0[2 * (nstages - 1) + j];
out[2 * i + j] = (float) y0[2 * (nstages - 1) + j];
}
}
}

View File

@ -52,8 +52,17 @@ public:
double Q;
double gain;
int nstages;
double a0, a1, a2, b1, b2;
std::vector<double> x0, x1, x2, y0, y1, y2;
double a0;
double a1;
double a2;
double b1;
double b2;
std::vector<double> x0;
std::vector<double> x1;
std::vector<double> x2;
std::vector<double> y0;
std::vector<double> y1;
std::vector<double> y2;
BQLP(
int run,

View File

@ -47,15 +47,15 @@ CBL::CBL(
int _mode,
int _sample_rate,
double _tau
)
) :
run(_run),
buff_size(_buff_size),
in_buff(_in_buff),
out_buff(_out_buff),
mode(_mode),
sample_rate((double) _sample_rate),
tau(_tau)
{
run = _run;
buff_size = _buff_size;
in_buff = _in_buff;
out_buff = _out_buff;
mode = _mode;
sample_rate = (double) _sample_rate;
tau = _tau;
calc();
}

View File

@ -32,381 +32,384 @@ warren@wpratt.com
namespace WDSP {
void CFCOMP::calc_cfcwindow (CFCOMP *a)
void CFCOMP::calc_cfcwindow()
{
int i;
float arg0, arg1, cgsum, igsum, coherent_gain, inherent_power_gain, wmult;
switch (a->wintype)
double arg0;
double arg1;
double cgsum;
double igsum;
double coherent_gain;
double inherent_power_gain;
double wmult;
switch (wintype)
{
case 0:
arg0 = 2.0 * PI / (float)a->fsize;
arg0 = 2.0 * PI / (float)fsize;
cgsum = 0.0;
igsum = 0.0;
for (i = 0; i < a->fsize; i++)
for (i = 0; i < fsize; i++)
{
a->window[i] = sqrt (0.54 - 0.46 * cos((float)i * arg0));
cgsum += a->window[i];
igsum += a->window[i] * a->window[i];
window[i] = sqrt (0.54 - 0.46 * cos((float)i * arg0));
cgsum += window[i];
igsum += window[i] * window[i];
}
coherent_gain = cgsum / (float)a->fsize;
inherent_power_gain = igsum / (float)a->fsize;
coherent_gain = cgsum / (float)fsize;
inherent_power_gain = igsum / (float)fsize;
wmult = 1.0 / sqrt (inherent_power_gain);
for (i = 0; i < a->fsize; i++)
a->window[i] *= wmult;
a->winfudge = sqrt (1.0 / coherent_gain);
for (i = 0; i < fsize; i++)
window[i] *= wmult;
winfudge = sqrt (1.0 / coherent_gain);
break;
case 1:
arg0 = 2.0 * PI / (float)a->fsize;
arg0 = 2.0 * PI / (float)fsize;
cgsum = 0.0;
igsum = 0.0;
for (i = 0; i < a->fsize; i++)
for (i = 0; i < fsize; i++)
{
arg1 = cos(arg0 * (float)i);
a->window[i] = sqrt (+0.21747
window[i] = sqrt (+0.21747
+ arg1 * (-0.45325
+ arg1 * (+0.28256
+ arg1 * (-0.04672))));
cgsum += a->window[i];
igsum += a->window[i] * a->window[i];
cgsum += window[i];
igsum += window[i] * window[i];
}
coherent_gain = cgsum / (float)a->fsize;
inherent_power_gain = igsum / (float)a->fsize;
coherent_gain = cgsum / (float)fsize;
inherent_power_gain = igsum / (float)fsize;
wmult = 1.0 / sqrt (inherent_power_gain);
for (i = 0; i < a->fsize; i++)
a->window[i] *= wmult;
a->winfudge = sqrt (1.0 / coherent_gain);
for (i = 0; i < fsize; i++)
window[i] *= wmult;
winfudge = sqrt (1.0 / coherent_gain);
break;
default:
break;
}
}
int CFCOMP::fCOMPcompare (const void *a, const void *b)
{
if (*(float*)a < *(float*)b)
if (*(double*)a < *(double*)b)
return -1;
else if (*(float*)a == *(float*)b)
else if (*(double*)a == *(double*)b)
return 0;
else
return 1;
}
void CFCOMP::calc_comp (CFCOMP *a)
void CFCOMP::calc_comp()
{
int i, j;
float f, frac, fincr, fmax;
float* sary;
a->precomplin = pow (10.0, 0.05 * a->precomp);
a->prepeqlin = pow (10.0, 0.05 * a->prepeq);
fmax = 0.5 * a->rate;
for (i = 0; i < a->nfreqs; i++)
int i;
int j;
double f;
double frac;
double fincr;
double fmax;
double* sary;
precomplin = pow (10.0, 0.05 * precomp);
prepeqlin = pow (10.0, 0.05 * prepeq);
fmax = 0.5 * rate;
for (i = 0; i < nfreqs; i++)
{
a->F[i] = std::max (a->F[i], 0.0f);
a->F[i] = std::min (a->F[i], fmax);
a->G[i] = std::max (a->G[i], 0.0f);
F[i] = std::max (F[i], 0.0);
F[i] = std::min (F[i], fmax);
G[i] = std::max (G[i], 0.0);
}
sary = new float[3 * a->nfreqs]; // (float *)malloc0 (3 * a->nfreqs * sizeof (float));
for (i = 0; i < a->nfreqs; i++)
sary = new double[3 * nfreqs];
for (i = 0; i < nfreqs; i++)
{
sary[3 * i + 0] = a->F[i];
sary[3 * i + 1] = a->G[i];
sary[3 * i + 2] = a->E[i];
sary[3 * i + 0] = F[i];
sary[3 * i + 1] = G[i];
sary[3 * i + 2] = E[i];
}
qsort (sary, a->nfreqs, 3 * sizeof (float), fCOMPcompare);
for (i = 0; i < a->nfreqs; i++)
qsort (sary, nfreqs, 3 * sizeof (float), fCOMPcompare);
for (i = 0; i < nfreqs; i++)
{
a->F[i] = sary[3 * i + 0];
a->G[i] = sary[3 * i + 1];
a->E[i] = sary[3 * i + 2];
F[i] = sary[3 * i + 0];
G[i] = sary[3 * i + 1];
E[i] = sary[3 * i + 2];
}
a->fp[0] = 0.0;
a->fp[a->nfreqs + 1] = fmax;
a->gp[0] = a->G[0];
a->gp[a->nfreqs + 1] = a->G[a->nfreqs - 1];
a->ep[0] = a->E[0]; // cutoff?
a->ep[a->nfreqs + 1] = a->E[a->nfreqs - 1]; // cutoff?
for (i = 0, j = 1; i < a->nfreqs; i++, j++)
fp[0] = 0.0;
fp[nfreqs + 1] = fmax;
gp[0] = G[0];
gp[nfreqs + 1] = G[nfreqs - 1];
ep[0] = E[0]; // cutoff?
ep[nfreqs + 1] = E[nfreqs - 1]; // cutoff?
for (i = 0, j = 1; i < nfreqs; i++, j++)
{
a->fp[j] = a->F[i];
a->gp[j] = a->G[i];
a->ep[j] = a->E[i];
fp[j] = F[i];
gp[j] = G[i];
ep[j] = E[i];
}
fincr = a->rate / (float)a->fsize;
fincr = rate / (float)fsize;
j = 0;
// print_impulse ("gp.txt", a->nfreqs+2, a->gp, 0, 0);
for (i = 0; i < a->msize; i++)
for (i = 0; i < msize; i++)
{
f = fincr * (float)i;
while (f >= a->fp[j + 1] && j < a->nfreqs) j++;
frac = (f - a->fp[j]) / (a->fp[j + 1] - a->fp[j]);
a->comp[i] = pow (10.0, 0.05 * (frac * a->gp[j + 1] + (1.0 - frac) * a->gp[j]));
a->peq[i] = pow (10.0, 0.05 * (frac * a->ep[j + 1] + (1.0 - frac) * a->ep[j]));
a->cfc_gain[i] = a->precomplin * a->comp[i];
while (f >= fp[j + 1] && j < nfreqs) j++;
frac = (f - fp[j]) / (fp[j + 1] - fp[j]);
comp[i] = pow (10.0, 0.05 * (frac * gp[j + 1] + (1.0 - frac) * gp[j]));
peq[i] = pow (10.0, 0.05 * (frac * ep[j + 1] + (1.0 - frac) * ep[j]));
cfc_gain[i] = precomplin * comp[i];
}
// print_impulse ("comp.txt", a->msize, a->comp, 0, 0);
delete[] sary;
}
void CFCOMP::calc_cfcomp(CFCOMP *a)
void CFCOMP::calc_cfcomp()
{
int i;
a->incr = a->fsize / a->ovrlp;
if (a->fsize > a->bsize)
a->iasize = a->fsize;
incr = fsize / ovrlp;
if (fsize > bsize)
iasize = fsize;
else
a->iasize = a->bsize + a->fsize - a->incr;
a->iainidx = 0;
a->iaoutidx = 0;
if (a->fsize > a->bsize)
iasize = bsize + fsize - incr;
iainidx = 0;
iaoutidx = 0;
if (fsize > bsize)
{
if (a->bsize > a->incr) a->oasize = a->bsize;
else a->oasize = a->incr;
a->oainidx = (a->fsize - a->bsize - a->incr) % a->oasize;
if (bsize > incr) oasize = bsize;
else oasize = incr;
oainidx = (fsize - bsize - incr) % oasize;
}
else
{
a->oasize = a->bsize;
a->oainidx = a->fsize - a->incr;
oasize = bsize;
oainidx = fsize - incr;
}
a->init_oainidx = a->oainidx;
a->oaoutidx = 0;
a->msize = a->fsize / 2 + 1;
a->window = new float[a->fsize]; // (float *)malloc0 (a->fsize * sizeof(float));
a->inaccum = new float[a->iasize]; // (float *)malloc0 (a->iasize * sizeof(float));
a->forfftin = new float[a->fsize]; // (float *)malloc0 (a->fsize * sizeof(float));
a->forfftout = new float[a->msize * 2]; // (float *)malloc0 (a->msize * sizeof(complex));
a->cmask = new float[a->msize]; // (float *)malloc0 (a->msize * sizeof(float));
a->mask = new float[a->msize]; // (float *)malloc0 (a->msize * sizeof(float));
a->cfc_gain = new float[a->msize]; // (float *)malloc0 (a->msize * sizeof(float));
a->revfftin = new float[a->msize * 2]; // (float *)malloc0 (a->msize * sizeof(complex));
a->revfftout = new float[a->fsize]; // (float *)malloc0 (a->fsize * sizeof(float));
a->save = new float*[a->ovrlp]; // (float **)malloc0(a->ovrlp * sizeof(float *));
for (i = 0; i < a->ovrlp; i++)
a->save[i] = new float[a->fsize]; // (float *)malloc0(a->fsize * sizeof(float));
a->outaccum = new float[a->oasize]; // (float *)malloc0(a->oasize * sizeof(float));
a->nsamps = 0;
a->saveidx = 0;
a->Rfor = fftwf_plan_dft_r2c_1d(a->fsize, a->forfftin, (fftwf_complex *)a->forfftout, FFTW_ESTIMATE);
a->Rrev = fftwf_plan_dft_c2r_1d(a->fsize, (fftwf_complex *)a->revfftin, a->revfftout, FFTW_ESTIMATE);
calc_cfcwindow(a);
init_oainidx = oainidx;
oaoutidx = 0;
msize = fsize / 2 + 1;
window.resize(fsize);
inaccum.resize(iasize);
forfftin.resize(fsize);
forfftout.resize(msize * 2);
cmask.resize(msize);
mask.resize(msize);
cfc_gain.resize(msize);
revfftin.resize(msize * 2);
revfftout.resize(fsize);
save.resize(ovrlp);
for (int i = 0; i < ovrlp; i++)
save[i].resize(fsize);
outaccum.resize(oasize);
nsamps = 0;
saveidx = 0;
Rfor = fftwf_plan_dft_r2c_1d(fsize, forfftin.data(), (fftwf_complex *)forfftout.data(), FFTW_ESTIMATE);
Rrev = fftwf_plan_dft_c2r_1d(fsize, (fftwf_complex *)revfftin.data(), revfftout.data(), FFTW_ESTIMATE);
calc_cfcwindow();
a->pregain = (2.0 * a->winfudge) / (float)a->fsize;
a->postgain = 0.5 / ((float)a->ovrlp * a->winfudge);
pregain = (2.0 * winfudge) / (double)fsize;
postgain = 0.5 / ((double)ovrlp * winfudge);
a->fp = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
a->gp = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
a->ep = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
a->comp = new float[a->msize]; // (float *) malloc0 (a->msize * sizeof (float));
a->peq = new float[a->msize]; // (float *) malloc0 (a->msize * sizeof (float));
calc_comp (a);
fp.resize(nfreqs + 2);
gp.resize(nfreqs + 2);
ep.resize(nfreqs + 2);
comp.resize(msize);
peq.resize(msize);
calc_comp();
a->gain = 0.0;
a->mmult = exp (-1.0 / (a->rate * a->ovrlp * a->mtau));
a->dmult = exp (-(float)a->fsize / (a->rate * a->ovrlp * a->dtau));
gain = 0.0;
mmult = exp (-1.0 / (rate * ovrlp * mtau));
dmult = exp (-(float)fsize / (rate * ovrlp * dtau));
a->delta = new float[a->msize]; // (float*)malloc0 (a->msize * sizeof(float));
a->delta_copy = new float[a->msize]; // (float*)malloc0 (a->msize * sizeof(float));
a->cfc_gain_copy = new float[a->msize]; // (float*)malloc0 (a->msize * sizeof(float));
delta.resize(msize);
delta_copy.resize(msize);
cfc_gain_copy.resize(msize);
}
void CFCOMP::decalc_cfcomp(CFCOMP *a)
void CFCOMP::decalc_cfcomp()
{
fftwf_destroy_plan(Rrev);
fftwf_destroy_plan(Rfor);
}
CFCOMP::CFCOMP(
int _run,
int _position,
int _peq_run,
int _size,
float* _in,
float* _out,
int _fsize,
int _ovrlp,
int _rate,
int _wintype,
int _comp_method,
int _nfreqs,
double _precomp,
double _prepeq,
const double* _F,
const double* _G,
const double* _E,
double _mtau,
double _dtau
) :
run (_run),
position(_position),
bsize(_size),
in(_in),
out(_out),
fsize(_fsize),
ovrlp(_ovrlp),
rate(_rate),
wintype(_wintype),
comp_method(_comp_method),
nfreqs(_nfreqs),
precomp(_precomp),
peq_run(_peq_run),
prepeq(_prepeq),
mtau(_mtau), // compression metering time constant
dtau(_dtau) // compression display time constant
{
F.resize(nfreqs);
G.resize(nfreqs);
E.resize(nfreqs);
std::copy(_F, _F + nfreqs, F.begin());
std::copy(_G, _G + nfreqs, G.begin());
std::copy(_E, _E + nfreqs, E.begin());
calc_cfcomp();
}
CFCOMP::~CFCOMP()
{
decalc_cfcomp();
}
void CFCOMP::flush()
{
std::fill(inaccum.begin(), inaccum.end(), 0);
for (int i = 0; i < ovrlp; i++)
std::fill(save[i].begin(), save[i].end(), 0);
std::fill(outaccum.begin(), outaccum.end(), 0);
nsamps = 0;
iainidx = 0;
iaoutidx = 0;
oainidx = init_oainidx;
oaoutidx = 0;
saveidx = 0;
gain = 0.0;
std::fill(delta.begin(), delta.end(), 0);
}
void CFCOMP::calc_mask()
{
int i;
delete[] (a->cfc_gain_copy);
delete[] (a->delta_copy);
delete[] (a->delta);
delete[] (a->peq);
delete[] (a->comp);
delete[] (a->ep);
delete[] (a->gp);
delete[] (a->fp);
fftwf_destroy_plan(a->Rrev);
fftwf_destroy_plan(a->Rfor);
delete[](a->outaccum);
for (i = 0; i < a->ovrlp; i++)
delete[](a->save[i]);
delete[](a->save);
delete[](a->revfftout);
delete[](a->revfftin);
delete[](a->cfc_gain);
delete[](a->mask);
delete[](a->cmask);
delete[](a->forfftout);
delete[](a->forfftin);
delete[](a->inaccum);
delete[](a->window);
}
CFCOMP* CFCOMP::create_cfcomp (int run, int position, int peq_run, int size, float* in, float* out, int fsize, int ovrlp,
int rate, int wintype, int comp_method, int nfreqs, float precomp, float prepeq, float* F, float* G, float* E, float mtau, float dtau)
{
CFCOMP *a = new CFCOMP;
a->run = run;
a->position = position;
a->peq_run = peq_run;
a->bsize = size;
a->in = in;
a->out = out;
a->fsize = fsize;
a->ovrlp = ovrlp;
a->rate = rate;
a->wintype = wintype;
a->comp_method = comp_method;
a->nfreqs = nfreqs;
a->precomp = precomp;
a->prepeq = prepeq;
a->mtau = mtau; // compression metering time constant
a->dtau = dtau; // compression display time constant
a->F = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
a->G = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
a->E = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
memcpy (a->F, F, a->nfreqs * sizeof (float));
memcpy (a->G, G, a->nfreqs * sizeof (float));
memcpy (a->E, E, a->nfreqs * sizeof (float));
calc_cfcomp (a);
return a;
}
void CFCOMP::flush_cfcomp (CFCOMP *a)
{
int i;
memset (a->inaccum, 0, a->iasize * sizeof (float));
for (i = 0; i < a->ovrlp; i++)
memset (a->save[i], 0, a->fsize * sizeof (float));
memset (a->outaccum, 0, a->oasize * sizeof (float));
a->nsamps = 0;
a->iainidx = 0;
a->iaoutidx = 0;
a->oainidx = a->init_oainidx;
a->oaoutidx = 0;
a->saveidx = 0;
a->gain = 0.0;
memset(a->delta, 0, a->msize * sizeof(float));
}
void CFCOMP::destroy_cfcomp (CFCOMP *a)
{
decalc_cfcomp (a);
delete[] (a->E);
delete[] (a->G);
delete[] (a->F);
delete (a);
}
void CFCOMP::calc_mask (CFCOMP *a)
{
int i;
float comp, mask, delta;
switch (a->comp_method)
double _comp;
double _mask;
double _delta;
if (comp_method == 0)
{
case 0:
double mag;
double test;
for (i = 0; i < msize; i++)
{
float mag, test;
for (i = 0; i < a->msize; i++)
{
mag = sqrt (a->forfftout[2 * i + 0] * a->forfftout[2 * i + 0]
+ a->forfftout[2 * i + 1] * a->forfftout[2 * i + 1]);
comp = a->cfc_gain[i];
test = comp * mag;
if (test > 1.0)
mask = 1.0 / mag;
else
mask = comp;
a->cmask[i] = mask;
if (test > a->gain) a->gain = test;
else a->gain = a->mmult * a->gain;
mag = sqrt (forfftout[2 * i + 0] * forfftout[2 * i + 0]
+ forfftout[2 * i + 1] * forfftout[2 * i + 1]);
_comp = cfc_gain[i];
test = _comp * mag;
if (test > 1.0)
_mask = 1.0 / mag;
else
_mask = _comp;
cmask[i] = _mask;
if (test > gain) gain = test;
else gain = mmult * gain;
delta = a->cfc_gain[i] - a->cmask[i];
if (delta > a->delta[i]) a->delta[i] = delta;
else a->delta[i] *= a->dmult;
_delta = cfc_gain[i] - cmask[i];
if (_delta > delta[i]) delta[i] = _delta;
else delta[i] *= dmult;
}
}
if (peq_run)
{
for (i = 0; i < msize; i++)
{
mask[i] = cmask[i] * prepeqlin * peq[i];
}
}
else
std::copy(cmask.begin(), cmask.end(), mask.begin());
mask_ready = 1;
}
void CFCOMP::execute(int pos)
{
if (run && pos == position)
{
int i;
int j;
int k;
int sbuff;
int sbegin;
for (i = 0; i < 2 * bsize; i += 2)
{
inaccum[iainidx] = in[i];
iainidx = (iainidx + 1) % iasize;
}
nsamps += bsize;
while (nsamps >= fsize)
{
for (i = 0, j = iaoutidx; i < fsize; i++, j = (j + 1) % iasize)
forfftin[i] = (float) (pregain * window[i] * inaccum[j]);
iaoutidx = (iaoutidx + incr) % iasize;
nsamps -= incr;
fftwf_execute (Rfor);
calc_mask();
for (i = 0; i < msize; i++)
{
revfftin[2 * i + 0] = (float) (mask[i] * forfftout[2 * i + 0]);
revfftin[2 * i + 1] = (float) (mask[i] * forfftout[2 * i + 1]);
}
break;
}
}
if (a->peq_run)
{
for (i = 0; i < a->msize; i++)
{
a->mask[i] = a->cmask[i] * a->prepeqlin * a->peq[i];
}
}
else
memcpy (a->mask, a->cmask, a->msize * sizeof (float));
// print_impulse ("mask.txt", a->msize, a->mask, 0, 0);
a->mask_ready = 1;
}
void CFCOMP::xcfcomp (CFCOMP *a, int pos)
{
if (a->run && pos == a->position)
{
int i, j, k, sbuff, sbegin;
for (i = 0; i < 2 * a->bsize; i += 2)
{
a->inaccum[a->iainidx] = a->in[i];
a->iainidx = (a->iainidx + 1) % a->iasize;
}
a->nsamps += a->bsize;
while (a->nsamps >= a->fsize)
{
for (i = 0, j = a->iaoutidx; i < a->fsize; i++, j = (j + 1) % a->iasize)
a->forfftin[i] = a->pregain * a->window[i] * a->inaccum[j];
a->iaoutidx = (a->iaoutidx + a->incr) % a->iasize;
a->nsamps -= a->incr;
fftwf_execute (a->Rfor);
calc_mask(a);
for (i = 0; i < a->msize; i++)
fftwf_execute (Rrev);
for (i = 0; i < fsize; i++)
save[saveidx][i] = postgain * window[i] * revfftout[i];
for (i = ovrlp; i > 0; i--)
{
a->revfftin[2 * i + 0] = a->mask[i] * a->forfftout[2 * i + 0];
a->revfftin[2 * i + 1] = a->mask[i] * a->forfftout[2 * i + 1];
}
fftwf_execute (a->Rrev);
for (i = 0; i < a->fsize; i++)
a->save[a->saveidx][i] = a->postgain * a->window[i] * a->revfftout[i];
for (i = a->ovrlp; i > 0; i--)
{
sbuff = (a->saveidx + i) % a->ovrlp;
sbegin = a->incr * (a->ovrlp - i);
for (j = sbegin, k = a->oainidx; j < a->incr + sbegin; j++, k = (k + 1) % a->oasize)
sbuff = (saveidx + i) % ovrlp;
sbegin = incr * (ovrlp - i);
for (j = sbegin, k = oainidx; j < incr + sbegin; j++, k = (k + 1) % oasize)
{
if ( i == a->ovrlp)
a->outaccum[k] = a->save[sbuff][j];
if ( i == ovrlp)
outaccum[k] = save[sbuff][j];
else
a->outaccum[k] += a->save[sbuff][j];
outaccum[k] += save[sbuff][j];
}
}
a->saveidx = (a->saveidx + 1) % a->ovrlp;
a->oainidx = (a->oainidx + a->incr) % a->oasize;
saveidx = (saveidx + 1) % ovrlp;
oainidx = (oainidx + incr) % oasize;
}
for (i = 0; i < a->bsize; i++)
for (i = 0; i < bsize; i++)
{
a->out[2 * i + 0] = a->outaccum[a->oaoutidx];
a->out[2 * i + 1] = 0.0;
a->oaoutidx = (a->oaoutidx + 1) % a->oasize;
out[2 * i + 0] = (float) (outaccum[oaoutidx]);
out[2 * i + 1] = 0.0;
oaoutidx = (oaoutidx + 1) % oasize;
}
}
else if (a->out != a->in)
std::copy(a->in, a->in + a->bsize * 2, a->out);
else if (out != in)
std::copy(in, in + bsize * 2, out);
}
void CFCOMP::setBuffers_cfcomp (CFCOMP *a, float* in, float* out)
void CFCOMP::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
in = _in;
out = _out;
}
void CFCOMP::setSamplerate_cfcomp (CFCOMP *a, int rate)
void CFCOMP::setSamplerate(int _rate)
{
decalc_cfcomp (a);
a->rate = rate;
calc_cfcomp (a);
decalc_cfcomp();
rate = _rate;
calc_cfcomp();
}
void CFCOMP::setSize_cfcomp (CFCOMP *a, int size)
void CFCOMP::setSize(int size)
{
decalc_cfcomp (a);
a->bsize = size;
calc_cfcomp (a);
decalc_cfcomp();
bsize = size;
calc_cfcomp();
}
/********************************************************************************************************
@ -415,94 +418,75 @@ void CFCOMP::setSize_cfcomp (CFCOMP *a, int size)
* *
********************************************************************************************************/
void CFCOMP::SetCFCOMPRun (TXA& txa, int run)
void CFCOMP::setRun(int _run)
{
CFCOMP *a = txa.cfcomp;
if (a->run != run) {
a->run = run;
if (run != _run) {
run = _run;
}
}
void CFCOMP::SetCFCOMPPosition (TXA& txa, int pos)
void CFCOMP::setPosition(int pos)
{
CFCOMP *a = txa.cfcomp;
if (a->position != pos) {
a->position = pos;
if (position != pos) {
position = pos;
}
}
void CFCOMP::SetCFCOMPprofile (TXA& txa, int nfreqs, float* F, float* G, float *E)
void CFCOMP::setProfile(int _nfreqs, const double* _F, const double* _G, const double* _E)
{
CFCOMP *a = txa.cfcomp;
a->nfreqs = nfreqs < 1 ? 1 : nfreqs;
delete[] (a->E);
delete[] (a->F);
delete[] (a->G);
a->F = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
a->G = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
a->E = new float[a->nfreqs]; // (float *)malloc0 (a->nfreqs * sizeof (float));
memcpy (a->F, F, a->nfreqs * sizeof (float));
memcpy (a->G, G, a->nfreqs * sizeof (float));
memcpy (a->E, E, a->nfreqs * sizeof (float));
delete[] (a->ep);
delete[] (a->gp);
delete[] (a->fp);
a->fp = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
a->gp = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
a->ep = new float[a->nfreqs + 2]; // (float *) malloc0 ((a->nfreqs + 2) * sizeof (float));
calc_comp(a);
nfreqs = _nfreqs < 1 ? 1 : _nfreqs;
F.resize(nfreqs);
G.resize(nfreqs);
E.resize(nfreqs);
std::copy(_F, _F + nfreqs, F.begin());
std::copy(_G, _G + nfreqs, G.begin());
std::copy(_E, _E + nfreqs, E.begin());
fp.resize(nfreqs + 2);
gp.resize(nfreqs + 2);
ep.resize(nfreqs + 2);
calc_comp();
}
void CFCOMP::SetCFCOMPPrecomp (TXA& txa, float precomp)
void CFCOMP::setPrecomp(double _precomp)
{
CFCOMP *a = txa.cfcomp;
if (a->precomp != precomp)
if (precomp != _precomp)
{
a->precomp = precomp;
a->precomplin = pow (10.0, 0.05 * a->precomp);
precomp = _precomp;
precomplin = pow (10.0, 0.05 * precomp);
for (int i = 0; i < a->msize; i++)
for (int i = 0; i < msize; i++)
{
a->cfc_gain[i] = a->precomplin * a->comp[i];
cfc_gain[i] = precomplin * comp[i];
}
}
}
void CFCOMP::SetCFCOMPPeqRun (TXA& txa, int run)
void CFCOMP::setPeqRun(int _run)
{
CFCOMP *a = txa.cfcomp;
if (a->peq_run != run) {
a->peq_run = run;
if (peq_run != _run) {
peq_run = _run;
}
}
void CFCOMP::SetCFCOMPPrePeq (TXA& txa, float prepeq)
void CFCOMP::setPrePeq(double _prepeq)
{
CFCOMP *a = txa.cfcomp;
a->prepeq = prepeq;
a->prepeqlin = pow (10.0, 0.05 * a->prepeq);
prepeq = _prepeq;
prepeqlin = pow (10.0, 0.05 * prepeq);
}
void CFCOMP::GetCFCOMPDisplayCompression (TXA& txa, float* comp_values, int* ready)
void CFCOMP::getDisplayCompression(double* comp_values, int* ready)
{
int i;
CFCOMP *a = txa.cfcomp;
if ((*ready = a->mask_ready))
if ((*ready = mask_ready))
{
memcpy(a->delta_copy, a->delta, a->msize * sizeof(float));
memcpy(a->cfc_gain_copy, a->cfc_gain, a->msize * sizeof(float));
a->mask_ready = 0;
std::copy(delta.begin(), delta.end(), delta_copy.begin());
std::copy(cfc_gain.begin(), cfc_gain.end(), cfc_gain_copy.begin());
mask_ready = 0;
}
if (*ready)
{
for (i = 0; i < a->msize; i++)
comp_values[i] = 20.0 * MemLog::mlog10 (a->cfc_gain_copy[i] / (a->cfc_gain_copy[i] - a->delta_copy[i]));
for (int i = 0; i < msize; i++)
comp_values[i] = 20.0 * MemLog::mlog10 (cfc_gain_copy[i] / (cfc_gain_copy[i] - delta_copy[i]));
}
}

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_cfcomp_h
#define wdsp_cfcomp_h
#include <vector>
#include "fftw3.h"
#include "export.h"
@ -46,25 +48,25 @@ public:
int fsize;
int ovrlp;
int incr;
float* window;
std::vector<double> window;
int iasize;
float* inaccum;
float* forfftin;
float* forfftout;
std::vector<double> inaccum;
std::vector<float> forfftin;
std::vector<float> forfftout;
int msize;
float* cmask;
float* mask;
std::vector<double> cmask;
std::vector<double> mask;
int mask_ready;
float* cfc_gain;
float* revfftin;
float* revfftout;
float** save;
std::vector<double> cfc_gain;
std::vector<float> revfftin;
std::vector<float> revfftout;
std::vector<std::vector<double>> save;
int oasize;
float* outaccum;
float rate;
std::vector<double> outaccum;
double rate;
int wintype;
float pregain;
float postgain;
double pregain;
double postgain;
int nsamps;
int iainidx;
int iaoutidx;
@ -77,32 +79,32 @@ public:
int comp_method;
int nfreqs;
float* F;
float* G;
float* E;
float* fp;
float* gp;
float* ep;
float* comp;
float precomp;
float precomplin;
float* peq;
std::vector<double> F;
std::vector<double> G;
std::vector<double> E;
std::vector<double> fp;
std::vector<double> gp;
std::vector<double> ep;
std::vector<double> comp;
double precomp;
double precomplin;
std::vector<double> peq;
int peq_run;
float prepeq;
float prepeqlin;
float winfudge;
double prepeq;
double prepeqlin;
double winfudge;
float gain;
float mtau;
float mmult;
double gain;
double mtau;
double mmult;
// display stuff
float dtau;
float dmult;
float* delta;
float* delta_copy;
float* cfc_gain_copy;
double dtau;
double dmult;
std::vector<double> delta;
std::vector<double> delta_copy;
std::vector<double> cfc_gain_copy;
static CFCOMP* create_cfcomp (
CFCOMP(
int run,
int position,
int peq_run,
@ -115,36 +117,39 @@ public:
int wintype,
int comp_method,
int nfreqs,
float precomp,
float prepeq,
float* F,
float* G,
float* E,
float mtau,
float dtau
double precomp,
double prepeq,
const double* F,
const double* G,
const double* E,
double mtau,
double dtau
);
static void destroy_cfcomp (CFCOMP *a);
static void flush_cfcomp (CFCOMP *a);
static void xcfcomp (CFCOMP *a, int pos);
static void setBuffers_cfcomp (CFCOMP *a, float* in, float* out);
static void setSamplerate_cfcomp (CFCOMP *a, int rate);
static void setSize_cfcomp (CFCOMP *a, int size);
CFCOMP(const CFCOMP&) = delete;
CFCOMP& operator=(CFCOMP& other) = delete;
~CFCOMP();
void flush();
void execute(int pos);
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
static void SetCFCOMPRun (TXA& txa, int run);
static void SetCFCOMPPosition (TXA& txa, int pos);
static void SetCFCOMPprofile (TXA& txa, int nfreqs, float* F, float* G, float *E);
static void SetCFCOMPPrecomp (TXA& txa, float precomp);
static void SetCFCOMPPeqRun (TXA& txa, int run);
static void SetCFCOMPPrePeq (TXA& txa, float prepeq);
static void GetCFCOMPDisplayCompression (TXA& txa, float* comp_values, int* ready);
void setRun(int run);
void setPosition(int pos);
void setProfile(int nfreqs, const double* F, const double* G, const double *E);
void setPrecomp(double precomp);
void setPeqRun(int run);
void setPrePeq(double prepeq);
void getDisplayCompression(double* comp_values, int* ready);
private:
static void calc_cfcwindow (CFCOMP *a);
void calc_cfcwindow();
static int fCOMPcompare (const void *a, const void *b);
static void calc_comp (CFCOMP *a);
static void calc_cfcomp(CFCOMP *a);
static void decalc_cfcomp(CFCOMP *a);
static void calc_mask (CFCOMP *a);
void calc_comp();
void calc_cfcomp();
void decalc_cfcomp();
void calc_mask();
};
} // namespace WDSP

View File

@ -32,36 +32,36 @@ warren@wpratt.com
namespace WDSP {
void CFIR::calc_cfir (CFIR *a)
void CFIR::calc()
{
float* impulse;
a->scale = 1.0 / (float)(2 * a->size);
impulse = cfir_impulse (a->nc, a->DD, a->R, a->Pairs, a->runrate, a->cicrate, a->cutoff, a->xtype, a->xbw, 1, a->scale, a->wintype);
a->p = FIRCORE::create_fircore (a->size, a->in, a->out, a->nc, a->mp, impulse);
delete[] (impulse);
scale = 1.0 / (float)(2 * size);
impulse = cfir_impulse (nc, DD, R, Pairs, runrate, cicrate, cutoff, xtype, xbw, 1, scale, wintype);
p = new FIRCORE(size, in, out, nc, mp, impulse);
delete[] impulse;
}
void CFIR::decalc_cfir (CFIR *a)
void CFIR::decalc()
{
FIRCORE::destroy_fircore (a->p);
delete p;
}
CFIR* CFIR::create_cfir (
int run,
int size,
int nc,
int mp,
float* in,
float* out,
int runrate,
int cicrate,
int DD,
int R,
int Pairs,
double cutoff,
int xtype,
double xbw,
int wintype
CFIR::CFIR(
int _run,
int _size,
int _nc,
int _mp,
float* _in,
float* _out,
int _runrate,
int _cicrate,
int _DD,
int _R,
int _Pairs,
double _cutoff,
int _xtype,
double _xbw,
int _wintype
)
// run: 0 - no action; 1 - operate
// size: number of complex samples in an input buffer to the CFIR filter
@ -77,87 +77,84 @@ CFIR* CFIR::create_cfir (
// xtype: 0 - fourth power transition; 1 - raised cosine transition; 2 - brick wall
// xbw: width of raised cosine transition
{
CFIR *a = new CFIR;
a->run = run;
a->size = size;
a->nc = nc;
a->mp = mp;
a->in = in;
a->out = out;
a->runrate = runrate;
a->cicrate = cicrate;
a->DD = DD;
a->R = R;
a->Pairs = Pairs;
a->cutoff = cutoff;
a->xtype = xtype;
a->xbw = xbw;
a->wintype = wintype;
calc_cfir (a);
return a;
run = _run;
size = _size;
nc = _nc;
mp = _mp;
in = _in;
out = _out;
runrate = _runrate;
cicrate = _cicrate;
DD = _DD;
R = _R;
Pairs = _Pairs;
cutoff = _cutoff;
xtype = _xtype;
xbw = _xbw;
wintype = _wintype;
calc();
}
void CFIR::destroy_cfir (CFIR *a)
CFIR::~CFIR()
{
decalc_cfir (a);
delete (a);
decalc();
}
void CFIR::flush_cfir (CFIR *a)
void CFIR::flush()
{
FIRCORE::flush_fircore (a->p);
p->flush();
}
void CFIR::xcfir (CFIR *a)
void CFIR::execute()
{
if (a->run)
FIRCORE::xfircore (a->p);
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
if (run)
p->execute();
else if (in != out)
std::copy( in, in + size * 2, out);
}
void CFIR::setBuffers_cfir (CFIR *a, float* in, float* out)
void CFIR::setBuffers(float* _in, float* _out)
{
decalc_cfir (a);
a->in = in;
a->out = out;
calc_cfir (a);
decalc();
in = _in;
out = _out;
calc();
}
void CFIR::setSamplerate_cfir (CFIR *a, int rate)
void CFIR::setSamplerate(int rate)
{
decalc_cfir (a);
a->runrate = rate;
calc_cfir (a);
decalc();
runrate = rate;
calc();
}
void CFIR::setSize_cfir (CFIR *a, int size)
void CFIR::setSize(int _size)
{
decalc_cfir (a);
a->size = size;
calc_cfir (a);
decalc();
size = _size;
calc();
}
void CFIR::setOutRate_cfir (CFIR *a, int rate)
void CFIR::setOutRate(int rate)
{
decalc_cfir (a);
a->cicrate = rate;
calc_cfir (a);
decalc();
cicrate = rate;
calc();
}
float* CFIR::cfir_impulse (
int N,
int DD,
int R,
int Pairs,
double runrate,
double cicrate,
double cutoff,
int xtype,
double xbw,
int rtype,
double scale,
int wintype
int _N,
int _DD,
int _R,
int _Pairs,
double _runrate,
double _cicrate,
double _cutoff,
int _xtype,
double _xbw,
int _rtype,
double _scale,
int _wintype
)
{
// N: number of impulse response samples
@ -171,91 +168,93 @@ float* CFIR::cfir_impulse (
// xbw: transition bandwidth for raised cosine
// rtype: 0 for real output, 1 for complex output
// scale: scale factor to be applied to the output
int i, j;
double tmp, local_scale, ri, mag, fn;
int i;
int j;
double tmp;
double local_scale;
double ri;
double mag = 0;
double fn;
float* impulse;
float* A = new float[N]; // (float *) malloc0 (N * sizeof (float));
double ft = cutoff / cicrate; // normalized cutoff frequency
int u_samps = (N + 1) / 2; // number of unique samples, OK for odd or even N
int c_samps = (int)(cutoff / runrate * N) + (N + 1) / 2 - N / 2; // number of unique samples within bandpass, OK for odd or even N
int x_samps = (int)(xbw / runrate * N); // number of unique samples in transition region, OK for odd or even N
double offset = 0.5 - 0.5 * (float)((N + 1) / 2 - N / 2); // sample offset from center, OK for odd or even N
double* xistion = new double[x_samps + 1]; // (float *) malloc0 ((x_samps + 1) * sizeof (float));
double delta = PI / (float)x_samps;
double L = cicrate / runrate;
double phs = 0.0;
std::vector<float> A(_N);
double ft = _cutoff / _cicrate; // normalized cutoff frequency
int u_samps = (_N + 1) / 2; // number of unique samples, OK for odd or even N
int c_samps = (int)(_cutoff / _runrate * _N) + (_N + 1) / 2 - _N / 2; // number of unique samples within bandpass, OK for odd or even N
auto x_samps = (int)(_xbw / _runrate * _N); // number of unique samples in transition region, OK for odd or even N
double offset = 0.5 - 0.5 * (double)((_N + 1) / 2 - _N / 2); // sample offset from center, OK for odd or even N
std::vector<double> xistion(x_samps + 1);
double delta = PI / (double)x_samps;
double L = _cicrate / _runrate;
double _phs = 0.0;
for (i = 0; i <= x_samps; i++)
{
xistion[i] = 0.5 * (cos (phs) + 1.0);
phs += delta;
xistion[i] = 0.5 * (cos (_phs) + 1.0);
_phs += delta;
}
if ((tmp = DD * R * sin (PI * ft / R) / sin (PI * DD * ft)) < 0.0) //normalize by peak gain
if ((tmp = _DD * _R * sin (PI * ft / _R) / sin (PI * _DD * ft)) < 0.0) //normalize by peak gain
tmp = -tmp;
local_scale = scale / pow (tmp, Pairs);
if (xtype == 0)
local_scale = _scale / pow (tmp, _Pairs);
if (_xtype == 0)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L * (float)N);
fn = ri / (L * (double) _N);
if (fn <= ft)
{
if (fn == 0.0)
tmp = 1.0;
else if ((tmp = DD * R * sin (PI * fn / R) / sin (PI * DD * fn)) < 0.0)
else if ((tmp = _DD * _R * sin (PI * fn / _R) / sin (PI * _DD * fn)) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
mag = pow (tmp, _Pairs) * local_scale;
}
else
mag *= (ft * ft * ft * ft) / (fn * fn * fn * fn);
A[i] = mag;
A[i] = (float) mag;
}
}
else if (xtype == 1)
else if (_xtype == 1)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L *(float)N);
fn = ri / (L *(double) _N);
if (i < c_samps)
{
if (fn == 0.0) tmp = 1.0;
else if ((tmp = DD * R * sin (PI * fn / R) / sin (PI * DD * fn)) < 0.0)
else if ((tmp = _DD * _R * sin (PI * fn / _R) / sin (PI * _DD * fn)) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
A[i] = mag;
mag = pow (tmp, _Pairs) * local_scale;
A[i] = (float) mag;
}
else if ( i >= c_samps && i <= c_samps + x_samps)
A[i] = mag * xistion[i - c_samps];
A[i] = (float) (mag * xistion[i - c_samps]);
else
A[i] = 0.0;
}
}
else if (xtype == 2)
else if (_xtype == 2)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L * (float)N);
fn = ri / (L * (double) _N);
if (fn <= ft)
{
if (fn == 0.0) tmp = 1.0;
else if ((tmp = DD * R * sin(PI * fn / R) / sin(PI * DD * fn)) < 0.0)
else if ((tmp = _DD * _R * sin(PI * fn / _R) / sin(PI * _DD * fn)) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
mag = pow (tmp, _Pairs) * local_scale;
}
else
mag = 0.0;
A[i] = mag;
A[i] = (float) mag;
}
}
if (N & 1)
for (i = u_samps, j = 2; i < N; i++, j++)
if (_N & 1)
for (i = u_samps, j = 2; i < _N; i++, j++)
A[i] = A[u_samps - j];
else
for (i = u_samps, j = 1; i < N; i++, j++)
for (i = u_samps, j = 1; i < _N; i++, j++)
A[i] = A[u_samps - j];
impulse = FIR::fir_fsamp (N, A, rtype, 1.0, wintype);
// print_impulse ("cfirImpulse.txt", N, impulse, 1, 0);
delete[] A;
delete[] xistion;
impulse = FIR::fir_fsamp (_N, A.data(), _rtype, 1.0, _wintype);
return impulse;
}
@ -265,22 +264,20 @@ float* CFIR::cfir_impulse (
* *
********************************************************************************************************/
void CFIR::SetCFIRRun (TXA& txa, int run)
void CFIR::setRun(int _run)
{
txa.cfir->run = run;
run = _run;
}
void CFIR::SetCFIRNC(TXA& txa, int nc)
void CFIR::setNC(int _nc)
{
// NOTE: 'nc' must be >= 'size'
CFIR *a;
a = txa.cfir;
if (a->nc != nc)
if (nc != _nc)
{
a->nc = nc;
decalc_cfir(a);
calc_cfir(a);
nc = _nc;
decalc();
calc();
}
}

View File

@ -56,7 +56,7 @@ public:
int wintype;
FIRCORE *p;
static CFIR* create_cfir (
CFIR(
int run,
int size,
int nc,
@ -73,13 +73,16 @@ public:
double xbw,
int wintype
);
static void destroy_cfir (CFIR *a);
static void flush_cfir (CFIR *a);
static void xcfir (CFIR *a);
static void setBuffers_cfir (CFIR *a, float* in, float* out);
static void setSamplerate_cfir (CFIR *a, int rate);
static void setSize_cfir (CFIR *a, int size);
static void setOutRate_cfir (CFIR *a, int rate);
CFIR(const CFIR&) = delete;
CFIR& operator=(CFIR& other) = delete;
~CFIR();
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
void setOutRate(int rate);
static float* cfir_impulse (
int N,
int DD,
@ -95,12 +98,12 @@ public:
int wintype
);
// TXA Properties
static void SetCFIRRun(TXA& txa, int run);
static void SetCFIRNC(TXA& txa, int nc);
void setRun(int run);
void setNC(int nc);
private:
static void calc_cfir (CFIR *a);
static void decalc_cfir (CFIR *a);
void calc();
void decalc();
};
} // namespace WDSP

View File

@ -34,62 +34,56 @@ in the January 2010 issue of RadCom magazine.
namespace WDSP {
COMPRESSOR* COMPRESSOR::create_compressor (
int run,
int buffsize,
float* inbuff,
float* outbuff,
float gain )
COMPRESSOR::COMPRESSOR(
int _run,
int _buffsize,
float* _inbuff,
float* _outbuff,
double _gain
) :
run(_run),
buffsize(_buffsize),
inbuff(_inbuff),
outbuff(_outbuff),
gain(_gain)
{}
void COMPRESSOR::flush()
{
COMPRESSOR *a = new COMPRESSOR;
a->run = run;
a->inbuff = inbuff;
a->outbuff = outbuff;
a->buffsize = buffsize;
a->gain = gain;
return a;
// Nothing to do
}
void COMPRESSOR::destroy_compressor (COMPRESSOR *a)
void COMPRESSOR::execute()
{
delete (a);
}
void COMPRESSOR::flush_compressor (COMPRESSOR *)
{
}
void COMPRESSOR::xcompressor (COMPRESSOR *a)
{
int i;
float mag;
if (a->run)
for (i = 0; i < a->buffsize; i++)
double mag;
if (run)
for (int i = 0; i < buffsize; i++)
{
mag = sqrt(a->inbuff[2 * i + 0] * a->inbuff[2 * i + 0] + a->inbuff[2 * i + 1] * a->inbuff[2 * i + 1]);
if (a->gain * mag > 1.0)
a->outbuff[2 * i + 0] = a->inbuff[2 * i + 0] / mag;
mag = sqrt(inbuff[2 * i + 0] * inbuff[2 * i + 0] + inbuff[2 * i + 1] * inbuff[2 * i + 1]);
if (gain * mag > 1.0)
outbuff[2 * i + 0] = (float) (inbuff[2 * i + 0] / mag);
else
a->outbuff[2 * i + 0] = a->inbuff[2 * i + 0] * a->gain;
a->outbuff[2 * i + 1] = 0.0;
outbuff[2 * i + 0] = (float) (inbuff[2 * i + 0] * gain);
outbuff[2 * i + 1] = 0.0;
}
else if (a->inbuff != a->outbuff)
std::copy(a->inbuff, a->inbuff + a->buffsize * 2, a->outbuff);
else if (inbuff != outbuff)
std::copy(inbuff, inbuff + buffsize * 2, outbuff);
}
void COMPRESSOR::setBuffers_compressor (COMPRESSOR *a, float* in, float* out)
void COMPRESSOR::setBuffers(float* _in, float* _out)
{
a->inbuff = in;
a->outbuff = out;
inbuff = _in;
outbuff = _out;
}
void COMPRESSOR::setSamplerate_compressor (COMPRESSOR *, int)
void COMPRESSOR::setSamplerate(int)
{
// Nothing to do
}
void COMPRESSOR::setSize_compressor (COMPRESSOR *a, int size)
void COMPRESSOR::setSize(int _size)
{
a->buffsize = size;
buffsize = _size;
}
/********************************************************************************************************
@ -98,18 +92,9 @@ void COMPRESSOR::setSize_compressor (COMPRESSOR *a, int size)
* *
********************************************************************************************************/
void COMPRESSOR::SetCompressorRun (TXA& txa, int run)
void COMPRESSOR::setGain(float _gain)
{
if (txa.compressor->run != run)
{
txa.compressor->run = run;
txa.setupBPFilters();
}
}
void COMPRESSOR::SetCompressorGain (TXA& txa, float gain)
{
txa.compressor->gain = pow (10.0, gain / 20.0);
gain = pow (10.0, _gain / 20.0);
}
} // namespace WDSP

View File

@ -41,24 +41,26 @@ public:
int buffsize;
float *inbuff;
float *outbuff;
float gain;
double gain;
static COMPRESSOR* create_compressor (
COMPRESSOR(
int run,
int buffsize,
float* inbuff,
float* outbuff,
float gain
double gain
);
static void destroy_compressor (COMPRESSOR *a);
static void flush_compressor (COMPRESSOR *a);
static void xcompressor (COMPRESSOR *a);
static void setBuffers_compressor (COMPRESSOR *a, float* in, float* out);
static void setSamplerate_compressor (COMPRESSOR *a, int rate);
static void setSize_compressor (COMPRESSOR *a, int size);
COMPRESSOR(const COMPRESSOR&) = delete;
COMPRESSOR& operator=(COMPRESSOR& other) = delete;
~COMPRESSOR() = default;
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
static void SetCompressorRun (TXA& txa, int run);
static void SetCompressorGain (TXA& txa, float gain);
void setGain(float gain);
};
} // namespace WDSP

View File

@ -38,7 +38,14 @@ namespace WDSP {
void DBQBP::calc()
{
double f0, w0, bw, q, sn, cs, c, den;
double f0;
double w0;
double bw;
double q;
double sn;
double cs;
double c;
double den;
bw = f_high - f_low;
f0 = (f_high + f_low) / 2.0;
@ -98,13 +105,12 @@ void DBQBP::execute()
{
if (run)
{
int i, n;
for (i = 0; i < size; i++)
for (int i = 0; i < size; i++)
{
x0[0] = gain * in[i];
for (n = 0; n < nstages; n++)
for (int n = 0; n < nstages; n++)
{
if (n > 0)
x0[n] = y0[n - 1];
@ -120,7 +126,7 @@ void DBQBP::execute()
x1[n] = x0[n];
}
out[i] = y0[nstages - 1];
out[i] = (float) y0[nstages - 1];
}
}
else if (out != in)

View File

@ -52,8 +52,17 @@ public:
double f_high;
double gain;
int nstages;
double a0, a1, a2, b1, b2;
std::vector<double> x0, x1, x2, y0, y1, y2;
double a0;
double a1;
double a2;
double b1;
double b2;
std::vector<double> x0;
std::vector<double> x1;
std::vector<double> x2;
std::vector<double> y0;
std::vector<double> y1;
std::vector<double> y2;
// Double Bi-Quad Band-Pass
DBQBP(

View File

@ -57,15 +57,15 @@ DSPHP::DSPHP(
double _rate,
double _fc,
int _nstages
)
) :
run(_run),
size(_size),
in(_in),
out(_out),
rate(_rate),
fc(_fc),
nstages(_nstages)
{
run = _run;
size = _size;
in = _in;
out = _out;
rate = _rate;
fc = _fc;
nstages = _nstages;
calc();
}

View File

@ -118,7 +118,9 @@ EMNR::NP::NP(
rate(_rate),
msize(_msize),
lambda_y(_lambda_y),
lambda_d(_lambda_d)
lambda_d(_lambda_d),
invQeqMax(0.5),
av(2.12)
{
double tau0 = -128.0 / 8000.0 / log(0.7);
@ -132,8 +134,6 @@ EMNR::NP::NP(
snrq = -incr / (0.064 * rate);
double tau4 = -128.0 / 8000.0 / log(0.8);
betamax = exp(-incr / rate / tau4);
invQeqMax = 0.5;
av = 2.12;
Dtime = 8.0 * 12.0 * 128.0 / 8000.0;
U = 8;
V = (int)(0.5 + (Dtime * rate / (U * incr)));

View File

@ -33,239 +33,117 @@ warren@wpratt.com
namespace WDSP {
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis *
* *
********************************************************************************************************/
EMPHP* EMPHP::create_emphp (int run, int position, int size, int nc, int mp, float* in, float* out, int rate, int ctype, float f_low, float f_high)
{
EMPHP *a = new EMPHP;
float* impulse;
a->run = run;
a->position = position;
a->size = size;
a->nc = nc;
a->mp = mp;
a->in = in;
a->out = out;
a->rate = rate;
a->ctype = ctype;
a->f_low = f_low;
a->f_high = f_high;
impulse = FCurve::fc_impulse (a->nc, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
a->p = FIRCORE::create_fircore (a->size, a->in, a->out, a->nc, a->mp, impulse);
delete[] (impulse);
return a;
}
void EMPHP::destroy_emphp (EMPHP *a)
{
FIRCORE::destroy_fircore (a->p);
delete (a);
}
void EMPHP::flush_emphp (EMPHP *a)
{
FIRCORE::flush_fircore (a->p);
}
void EMPHP::xemphp (EMPHP *a, int position)
{
if (a->run && a->position == position)
FIRCORE::xfircore (a->p);
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
}
void EMPHP::setBuffers_emphp (EMPHP *a, float* in, float* out)
{
a->in = in;
a->out = out;
FIRCORE::setBuffers_fircore (a->p, a->in, a->out);
}
void EMPHP::setSamplerate_emphp (EMPHP *a, int rate)
{
float* impulse;
a->rate = rate;
impulse = FCurve::fc_impulse (a->nc, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EMPHP::setSize_emphp (EMPHP *a, int size)
{
float* impulse;
a->size = size;
FIRCORE::setSize_fircore (a->p, a->size);
impulse = FCurve::fc_impulse (a->nc, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis: TXA Properties *
* *
********************************************************************************************************/
void EMPHP::SetFMEmphPosition (TXA& txa, int position)
{
txa.preemph->position = position;
}
void EMPHP::SetFMEmphMP (TXA& txa, int mp)
{
EMPHP *a;
a = txa.preemph;
if (a->mp != mp)
{
a->mp = mp;
FIRCORE::setMp_fircore (a->p, a->mp);
}
}
void EMPHP::SetFMEmphNC (TXA& txa, int nc)
{
EMPHP *a;
float* impulse;
a = txa.preemph;
if (a->nc != nc)
{
a->nc = nc;
impulse = FCurve::fc_impulse (a->nc, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
FIRCORE::setNc_fircore (a->p, a->nc, impulse);
delete[] (impulse);
}
}
void EMPHP::SetFMPreEmphFreqs (TXA& txa, float low, float high)
{
EMPHP *a;
float* impulse;
a = txa.preemph;
if (a->f_low != low || a->f_high != high)
{
a->f_low = low;
a->f_high = high;
impulse = FCurve::fc_impulse (a->nc, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
}
/********************************************************************************************************
* *
* Overlap-Save FM Pre-Emphasis *
* *
********************************************************************************************************/
void EMPH::calc_emph (EMPH *a)
void EMPH::calc()
{
a->infilt = new float[2 * a->size * 2]; // (float *)malloc0(2 * a->size * sizeof(complex));
a->product = new float[2 * a->size * 2]; // (float *)malloc0(2 * a->size * sizeof(complex));
a->mults = FCurve::fc_mults(a->size, a->f_low, a->f_high, -20.0 * log10(a->f_high / a->f_low), 0.0, a->ctype, a->rate, 1.0 / (2.0 * a->size), 0, 0);
a->CFor = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->infilt, (fftwf_complex *)a->product, FFTW_FORWARD, FFTW_PATIENT);
a->CRev = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->product, (fftwf_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT);
infilt = new float[2 * size * 2];
product = new float[2 * size * 2];
mults = FCurve::fc_mults(
size,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0,
0
);
CFor = fftwf_plan_dft_1d(2 * size, (fftwf_complex *)infilt, (fftwf_complex *)product, FFTW_FORWARD, FFTW_PATIENT);
CRev = fftwf_plan_dft_1d(2 * size, (fftwf_complex *)product, (fftwf_complex *)out, FFTW_BACKWARD, FFTW_PATIENT);
}
void EMPH::decalc_emph (EMPH *a)
void EMPH::decalc()
{
fftwf_destroy_plan(a->CRev);
fftwf_destroy_plan(a->CFor);
delete[] (a->mults);
delete[] (a->product);
delete[] (a->infilt);
fftwf_destroy_plan(CRev);
fftwf_destroy_plan(CFor);
delete[] mults;
delete[] product;
delete[] infilt;
}
EMPH* EMPH::create_emph (int run, int position, int size, float* in, float* out, int rate, int ctype, float f_low, float f_high)
EMPH::EMPH(
int _run,
int _position,
int _size,
float* _in,
float* _out,
int _rate,
int _ctype,
double _f_low,
double _f_high
) :
run(_run),
position(_position),
size(_size),
in(_in),
out(_out),
ctype(_ctype),
f_low(_f_low),
f_high(_f_high),
rate((double) _rate)
{
EMPH *a = new EMPH;
a->run = run;
a->position = position;
a->size = size;
a->in = in;
a->out = out;
a->rate = (float)rate;
a->ctype = ctype;
a->f_low = f_low;
a->f_high = f_high;
calc_emph (a);
return a;
calc();
}
void EMPH::destroy_emph (EMPH *a)
EMPH::~EMPH()
{
decalc_emph (a);
delete (a);
decalc();
}
void EMPH::flush_emph (EMPH *a)
void EMPH::flush()
{
std::fill(a->infilt, a->infilt + 2 * a->size * 2, 0);
std::fill(infilt, infilt + 2 * size * 2, 0);
}
void EMPH::xemph (EMPH *a, int position)
void EMPH::execute(int _position)
{
int i;
float I, Q;
if (a->run && a->position == position)
double I;
double Q;
if (run && position == _position)
{
std::copy(a->in, a->in + a->size * 2, &(a->infilt[2 * a->size]));
fftwf_execute (a->CFor);
for (i = 0; i < 2 * a->size; i++)
std::copy(in, in + size * 2, &(infilt[2 * size]));
fftwf_execute (CFor);
for (int i = 0; i < 2 * size; i++)
{
I = a->product[2 * i + 0];
Q = a->product[2 * i + 1];
a->product[2 * i + 0] = I * a->mults[2 * i + 0] - Q * a->mults[2 * i + 1];
a->product[2 * i + 1] = I * a->mults[2 * i + 1] + Q * a->mults[2 * i + 0];
I = product[2 * i + 0];
Q = product[2 * i + 1];
product[2 * i + 0] = (float) (I * mults[2 * i + 0] - Q * mults[2 * i + 1]);
product[2 * i + 1] = (float) (I * mults[2 * i + 1] + Q * mults[2 * i + 0]);
}
fftwf_execute (a->CRev);
std::copy(&(a->infilt[2 * a->size]), &(a->infilt[2 * a->size]) + a->size * 2, a->infilt);
fftwf_execute (CRev);
std::copy(&(infilt[2 * size]), &(infilt[2 * size]) + size * 2, infilt);
}
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (in != out)
std::copy( in, in + size * 2, out);
}
void EMPH::setBuffers_emph (EMPH *a, float* in, float* out)
void EMPH::setBuffers(float* _in, float* _out)
{
decalc_emph (a);
a->in = in;
a->out = out;
calc_emph (a);
decalc();
in = _in;
out = _out;
calc();
}
void EMPH::setSamplerate_emph (EMPH *a, int rate)
void EMPH::setSamplerate(int _rate)
{
decalc_emph (a);
a->rate = rate;
calc_emph (a);
decalc();
rate = _rate;
calc();
}
void EMPH::setSize_emph (EMPH *a, int size)
void EMPH::setSize(int _size)
{
decalc_emph(a);
a->size = size;
calc_emph(a);
decalc();
size = _size;
calc();
}
/********************************************************************************************************
* *
* Overlap-Save FM Pre-Emphasis: TXA Properties *
* *
********************************************************************************************************/
/* // Uncomment when needed
PORT
void SetTXAFMEmphPosition (int channel, int position)
{
ch.csDSP.lock();
txa.preemph->position = position;
ch.csDSP.unlock();
}
*/
} // namespace WDSP

View File

@ -25,57 +25,6 @@ warren@wpratt.com
*/
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis *
* *
********************************************************************************************************/
#ifndef wdsp_emphp_h
#define wdsp_emphp_h
#include "export.h"
namespace WDSP {
class FIRCORE;
class TXA;
class WDSP_API EMPHP
{
public:
int run;
int position;
int size;
int nc;
int mp;
float* in;
float* out;
int ctype;
float f_low;
float f_high;
float rate;
FIRCORE *p;
static EMPHP* create_emphp (int run, int position, int size, int nc, int mp,
float* in, float* out, int rate, int ctype, float f_low, float f_high);
static void destroy_emphp (EMPHP *a);
static void flush_emphp (EMPHP *a);
static void xemphp (EMPHP *a, int position);
static void setBuffers_emphp (EMPHP *a, float* in, float* out);
static void setSamplerate_emphp (EMPHP *a, int rate);
static void setSize_emphp (EMPHP *a, int size);
// TXA Properties
static void SetFMEmphPosition (TXA& txa, int position);
static void SetFMEmphMP (TXA& txa, int mp);
static void SetFMEmphNC (TXA& txa, int nc);
static void SetFMPreEmphFreqs(TXA& txa, float low, float high);
};
} // namespace WDSP
#endif
/********************************************************************************************************
* *
* Overlap-Save FM Pre-Emphasis *
@ -92,32 +41,46 @@ namespace WDSP {
class WDSP_API EMPH
{
public:
int run;
int position;
int size;
float* in;
float* out;
int ctype;
float f_low;
float f_high;
double f_low;
double f_high;
float* infilt;
float* product;
float* mults;
float rate;
double rate;
fftwf_plan CFor;
fftwf_plan CRev;
static EMPH* create_emph (int run, int position, int size, float* in, float* out, int rate, int ctype, float f_low, float f_high);
static void destroy_emph (EMPH *a);
static void flush_emph (EMPH *a);
static void xemph (EMPH *a, int position);
static void setBuffers_emph (EMPH *a, float* in, float* out);
static void setSamplerate_emph (EMPH *a, int rate);
static void setSize_emph (EMPH *a, int size);
EMPH(
int run,
int position,
int size,
float* in,
float* out,
int rate,
int ctype,
double f_low,
double f_high
);
EMPH(const EMPH&) = delete;
EMPH& operator=(const EMPH& other) = delete;
~EMPH();
void flush();
void execute(int position);
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
private:
static void calc_emph (EMPH *a);
static void decalc_emph (EMPH *a);
void calc();
void decalc();
};
} // namespace WDSP

217
wdsp/emphp.cpp Normal file
View File

@ -0,0 +1,217 @@
/* emph.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2014, 2016, 2023 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "emphp.hpp"
#include "fcurve.hpp"
#include "fircore.hpp"
#include "TXA.hpp"
namespace WDSP {
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis *
* *
********************************************************************************************************/
EMPHP::EMPHP(
int _run,
int _position,
int _size,
int _nc,
int _mp,
float* _in,
float* _out,
int _rate,
int _ctype,
double _f_low,
double _f_high
)
{
float* impulse;
run = _run;
position = _position;
size = _size;
nc = _nc;
mp = _mp;
in = _in;
out = _out;
rate = _rate;
ctype = _ctype;
f_low = _f_low;
f_high = _f_high;
impulse = FCurve::fc_impulse (
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0, 0
);
p = new FIRCORE(size, in, out, nc, mp, impulse);
delete[] (impulse);
}
EMPHP::~EMPHP()
{
delete (p);
}
void EMPHP::flush()
{
p->flush();
}
void EMPHP::execute(int _position)
{
if (run && position == _position)
p->execute();
else if (in != out)
std::copy( in, in + size * 2, out);
}
void EMPHP::setBuffers(float* _in, float* _out)
{
in = _in;
out = _out;
p->setBuffers(in, out);
}
void EMPHP::setSamplerate(int _rate)
{
float* impulse;
rate = _rate;
impulse = FCurve::fc_impulse (
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0, 0
);
p->setImpulse(impulse, 1);
delete[] (impulse);
}
void EMPHP::setSize(int _size)
{
float* impulse;
size = _size;
p->setSize(size);
impulse = FCurve::fc_impulse (
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0,
0
);
p->setImpulse(impulse, 1);
delete[] (impulse);
}
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis: TXA Properties *
* *
********************************************************************************************************/
void EMPHP::setPosition(int _position)
{
position = _position;
}
void EMPHP::setMP(int _mp)
{
if (mp != _mp)
{
mp = _mp;
p->setMp(mp);
}
}
void EMPHP::setNC(int _nc)
{
float* impulse;
if (nc != _nc)
{
nc = _nc;
impulse = FCurve::fc_impulse (
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0,
0
);
p->setNc(nc, impulse);
delete[] (impulse);
}
}
void EMPHP::setFreqs(double low, double high)
{
float* impulse;
if (f_low != low || f_high != high)
{
f_low = low;
f_high = high;
impulse = FCurve::fc_impulse (
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
0,
0
);
p->setImpulse(impulse, 1);
delete[] (impulse);
}
}
} // namespace WDSP

91
wdsp/emphp.hpp Normal file
View File

@ -0,0 +1,91 @@
/* emph.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2014, 2016, 2023 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
/********************************************************************************************************
* *
* Partitioned Overlap-Save FM Pre-Emphasis *
* *
********************************************************************************************************/
#ifndef wdsp_emphp_h
#define wdsp_emphp_h
#include "export.h"
namespace WDSP {
class FIRCORE;
class TXA;
class WDSP_API EMPHP
{
public:
int run;
int position;
int size;
int nc;
int mp;
float* in;
float* out;
int ctype;
double f_low;
double f_high;
double rate;
FIRCORE *p;
EMPHP(
int run,
int position,
int size,
int nc,
int mp,
float* in,
float* out,
int rate,
int ctype,
double f_low,
double f_high
);
EMPHP(const EMPHP&) = delete;
EMPHP& operator=(const EMPHP& other) = delete;
~EMPHP();
void flush();
void execute(int position);
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
void setPosition(int position);
void setMP(int mp);
void setNC(int nc);
void setFreqs(double low, double high);
};
} // namespace WDSP
#endif

View File

@ -234,24 +234,24 @@ EQP::EQP(
wintype = _wintype;
samplerate = (double) _samplerate;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
fircore = FIRCORE::create_fircore (size, in, out, nc, mp, impulse);
fircore = new FIRCORE(size, in, out, nc, mp, impulse);
delete[] impulse;
}
EQP::~EQP()
{
FIRCORE::destroy_fircore (fircore);
delete (fircore);
}
void EQP::flush()
{
FIRCORE::flush_fircore (fircore);
fircore->flush();
}
void EQP::execute()
{
if (run)
FIRCORE::xfircore (fircore);
fircore->execute();
else
std::copy(in, in + size * 2, out);
}
@ -260,7 +260,7 @@ void EQP::setBuffers(float* _in, float* _out)
{
in = _in;
out = _out;
FIRCORE::setBuffers_fircore (fircore, in, out);
fircore->setBuffers(in, out);
}
void EQP::setSamplerate(int rate)
@ -268,7 +268,7 @@ void EQP::setSamplerate(int rate)
float* impulse;
samplerate = rate;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
@ -276,9 +276,9 @@ void EQP::setSize(int _size)
{
float* impulse;
size = _size;
FIRCORE::setSize_fircore (fircore, size);
fircore->setSize(size);
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
@ -301,7 +301,7 @@ void EQP::setNC(int _nc)
{
nc = _nc;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
FIRCORE::setNc_fircore (fircore, nc, impulse);
fircore->setNc(nc, impulse);
delete[] impulse;
}
}
@ -311,7 +311,7 @@ void EQP::setMP(int _mp)
if (mp != _mp)
{
mp = _mp;
FIRCORE::setMp_fircore (fircore, mp);
fircore->setMp(mp);
}
}
@ -324,7 +324,7 @@ void EQP::setProfile(int _nfreqs, const float* _F, const float* _G)
std::copy(_F, _F + (_nfreqs + 1), F.begin());
std::copy(_G, _G + (_nfreqs + 1), G.begin());
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
@ -333,7 +333,7 @@ void EQP::setCtfmode(int _mode)
float* impulse;
ctfmode = _mode;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
@ -342,7 +342,7 @@ void EQP::setWintype(int _wintype)
float* impulse;
wintype = _wintype;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
@ -363,7 +363,7 @@ void EQP::setGrphEQ(const int *rxeq)
G[4] = (float)rxeq[3];
ctfmode = 0;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
@ -387,7 +387,7 @@ void EQP::setGrphEQ10(const int *rxeq)
G[i] = (float)rxeq[i];
ctfmode = 0;
impulse = eq_impulse (nc, nfreqs, F.data(), G.data(), samplerate, 1.0 / (2.0 * size), ctfmode, wintype);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}

View File

@ -377,7 +377,7 @@ void FIR::analytic (int N, float* in, float* out)
fftwf_destroy_plan (pfor);
}
void FIR::mp_imp (int N, float* fir, float* mpfir, int pfactor, int polarity)
void FIR::mp_imp (int N, std::vector<float>& fir, std::vector<float>& mpfir, int pfactor, int polarity)
{
int i;
int size = N * pfactor;
@ -388,7 +388,7 @@ void FIR::mp_imp (int N, float* fir, float* mpfir, int pfactor, int polarity)
std::vector<float> ana(size * 2);
std::vector<float> impulse(size * 2);
std::vector<float> newfreq(size * 2);
std::copy(fir, fir + N * 2, firpad.begin());
std::copy(fir.begin(), fir.begin() + N * 2, firpad.begin());
fftwf_plan pfor = fftwf_plan_dft_1d (
size,
(fftwf_complex *) firpad.data(),
@ -425,9 +425,9 @@ void FIR::mp_imp (int N, float* fir, float* mpfir, int pfactor, int polarity)
}
fftwf_execute (prev);
if (polarity)
std::copy(&impulse[2 * (pfactor - 1) * N], &impulse[2 * (pfactor - 1) * N] + N * 2, mpfir);
std::copy(&impulse[2 * (pfactor - 1) * N], &impulse[2 * (pfactor - 1) * N] + N * 2, mpfir.begin());
else
std::copy(impulse.begin(), impulse.end(), mpfir);
std::copy(impulse.begin(), impulse.end(), mpfir.begin());
fftwf_destroy_plan (prev);
fftwf_destroy_plan (pfor);

View File

@ -27,6 +27,8 @@ warren@pratt.one
#ifndef wdsp_fir_h
#define wdsp_fir_h
#include <vector>
#include "export.h"
namespace WDSP {
@ -38,7 +40,7 @@ public:
static float* fir_fsamp_odd (int N, const float* A, int rtype, double scale, int wintype);
static float* fir_fsamp (int N, const float* A, int rtype, double scale, int wintype);
static float* fir_bandpass (int N, double f_low, double f_high, double samplerate, int wintype, int rtype, double scale);
static void mp_imp (int N, float* fir, float* mpfir, int pfactor, int polarity);
static void mp_imp (int N, std::vector<float>& fir, std::vector<float>& mpfir, int pfactor, int polarity);
private:
static void analytic (int N, float* in, float* out);

View File

@ -38,223 +38,202 @@ namespace WDSP {
********************************************************************************************************/
void FIRCORE::plan_fircore (FIRCORE *a)
void FIRCORE::plan()
{
// must call for change in 'nc', 'size', 'out'
int i;
a->nfor = a->nc / a->size;
a->cset = 0;
a->buffidx = 0;
a->idxmask = a->nfor - 1;
a->fftin = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->fftout = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *));
a->fmask = new float**[2]; // (float ***) malloc0 (2 * sizeof (float **));
a->fmask[0] = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *));
a->fmask[1] = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *));
a->maskgen = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->pcfor = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan));
a->maskplan = new fftwf_plan*[2]; // (fftwf_plan **) malloc0 (2 * sizeof (fftwf_plan *));
a->maskplan[0] = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan));
a->maskplan[1] = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan));
for (i = 0; i < a->nfor; i++)
nfor = nc / size;
cset = 0;
buffidx = 0;
idxmask = nfor - 1;
fftin.resize(2 * size * 2);
fftout.resize(nfor);
fmask[0].resize(nfor);
fmask[1].resize(nfor);
maskgen.resize(2 * size * 2);
pcfor.resize(nfor);
maskplan[0].resize(nfor);
maskplan[1].resize(nfor);
for (int i = 0; i < nfor; i++)
{
a->fftout[i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->fmask[0][i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->fmask[1][i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->pcfor[i] = fftwf_plan_dft_1d(
2 * a->size,
(fftwf_complex *)a->fftin,
(fftwf_complex *)a->fftout[i],
fftout[i].resize(2 * size * 2);
fmask[0][i].resize(2 * size * 2);
fmask[1][i].resize(2 * size * 2);
pcfor[i] = fftwf_plan_dft_1d(
2 * size,
(fftwf_complex *)fftin.data(),
(fftwf_complex *)fftout[i].data(),
FFTW_FORWARD,
FFTW_PATIENT
);
a->maskplan[0][i] = fftwf_plan_dft_1d(
2 * a->size,
(fftwf_complex *)a->maskgen,
(fftwf_complex *)a->fmask[0][i],
maskplan[0][i] = fftwf_plan_dft_1d(
2 * size,
(fftwf_complex *)maskgen.data(),
(fftwf_complex *)fmask[0][i].data(),
FFTW_FORWARD,
FFTW_PATIENT
);
a->maskplan[1][i] = fftwf_plan_dft_1d(
2 * a->size,
(fftwf_complex *)a->maskgen,
(fftwf_complex *)a->fmask[1][i],
maskplan[1][i] = fftwf_plan_dft_1d(
2 * size,
(fftwf_complex *)maskgen.data(),
(fftwf_complex *)fmask[1][i].data(),
FFTW_FORWARD,
FFTW_PATIENT
);
}
a->accum = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->crev = fftwf_plan_dft_1d(
2 * a->size,
(fftwf_complex *)a->accum,
(fftwf_complex *)a->out,
accum.resize(2 * size * 2);
crev = fftwf_plan_dft_1d(
2 * size,
(fftwf_complex *)accum.data(),
(fftwf_complex *)out,
FFTW_BACKWARD,
FFTW_PATIENT
);
a->masks_ready = 0;
masks_ready = 0;
}
void FIRCORE::calc_fircore (FIRCORE *a, int flip)
void FIRCORE::calc(int _flip)
{
// call for change in frequency, rate, wintype, gain
// must also call after a call to plan_firopt()
int i;
if (a->mp)
FIR::mp_imp (a->nc, a->impulse, a->imp, 16, 0);
if (mp)
FIR::mp_imp (nc, impulse, imp, 16, 0);
else
std::copy(a->impulse, a->impulse + a->nc * 2, a->imp);
std::copy(impulse.begin(), impulse.begin() + nc * 2, imp.begin());
for (i = 0; i < a->nfor; i++)
for (int i = 0; i < nfor; i++)
{
// I right-justified the impulse response => take output from left side of output buff, discard right side
// Be careful about flipping an asymmetrical impulse response.
std::copy(&(a->imp[2 * a->size * i]), &(a->imp[2 * a->size * i]) + a->size * 2, &(a->maskgen[2 * a->size]));
fftwf_execute (a->maskplan[1 - a->cset][i]);
std::copy(&(imp[2 * size * i]), &(imp[2 * size * i]) + size * 2, &(maskgen[2 * size]));
fftwf_execute (maskplan[1 - cset][i]);
}
a->masks_ready = 1;
masks_ready = 1;
if (flip)
if (_flip)
{
a->cset = 1 - a->cset;
a->masks_ready = 0;
cset = 1 - cset;
masks_ready = 0;
}
}
FIRCORE* FIRCORE::create_fircore (int size, float* in, float* out, int nc, int mp, float* impulse)
FIRCORE::FIRCORE(
int _size,
float* _in,
float* _out,
int _nc,
int _mp,
float* _impulse
)
{
FIRCORE *a = new FIRCORE;
a->size = size;
a->in = in;
a->out = out;
a->nc = nc;
a->mp = mp;
// InitializeCriticalSectionAndSpinCount (&a->update, 2500);
plan_fircore (a);
a->impulse = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex));
a->imp = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex));
std::copy(impulse, impulse + a->nc * 2, a->impulse);
calc_fircore (a, 1);
return a;
size = _size;
in = _in;
out = _out;
nc = _nc;
mp = _mp;
plan();
impulse.resize(nc * 2);
imp.resize(nc * 2);
std::copy(_impulse, _impulse + nc * 2, impulse.begin());
calc(1);
}
void FIRCORE::deplan_fircore (FIRCORE *a)
void FIRCORE::deplan()
{
int i;
fftwf_destroy_plan (a->crev);
delete[] (a->accum);
for (i = 0; i < a->nfor; i++)
fftwf_destroy_plan (crev);
for (int i = 0; i < nfor; i++)
{
delete[] (a->fftout[i]);
delete[] (a->fmask[0][i]);
delete[] (a->fmask[1][i]);
fftwf_destroy_plan (a->pcfor[i]);
fftwf_destroy_plan (a->maskplan[0][i]);
fftwf_destroy_plan (a->maskplan[1][i]);
fftwf_destroy_plan (pcfor[i]);
fftwf_destroy_plan (maskplan[0][i]);
fftwf_destroy_plan (maskplan[1][i]);
}
delete[] (a->maskplan[0]);
delete[] (a->maskplan[1]);
delete[] (a->maskplan);
delete[] (a->pcfor);
delete[] (a->maskgen);
delete[] (a->fmask[0]);
delete[] (a->fmask[1]);
delete[] (a->fmask);
delete[] (a->fftout);
delete[] (a->fftin);
}
void FIRCORE::destroy_fircore (FIRCORE *a)
FIRCORE::~FIRCORE()
{
deplan_fircore (a);
delete[] (a->imp);
delete[] (a->impulse);
delete (a);
deplan();
}
void FIRCORE::flush_fircore (FIRCORE *a)
void FIRCORE::flush()
{
int i;
std::fill(a->fftin, a->fftin + 2 * a->size * 2, 0);
for (i = 0; i < a->nfor; i++)
std::fill(a->fftout[i], a->fftout[i] + 2 * a->size * 2, 0);
a->buffidx = 0;
std::fill(fftin.begin(), fftin.end(), 0);
for (int i = 0; i < nfor; i++)
std::fill(fftout[i].begin(), fftout[i].end(), 0);
buffidx = 0;
}
void FIRCORE::xfircore (FIRCORE *a)
void FIRCORE::execute()
{
int i, j, k;
std::copy(a->in, a->in + a->size * 2, &(a->fftin[2 * a->size]));
fftwf_execute (a->pcfor[a->buffidx]);
k = a->buffidx;
std::fill(a->accum, a->accum + 2 * a->size * 2, 0);
int k;
std::copy(in, in + size * 2, &(fftin[2 * size]));
fftwf_execute (pcfor[buffidx]);
k = buffidx;
std::fill(accum.begin(), accum.end(), 0);
for (j = 0; j < a->nfor; j++)
for (int j = 0; j < nfor; j++)
{
for (i = 0; i < 2 * a->size; i++)
for (int i = 0; i < 2 * size; i++)
{
a->accum[2 * i + 0] += a->fftout[k][2 * i + 0] * a->fmask[a->cset][j][2 * i + 0] - a->fftout[k][2 * i + 1] * a->fmask[a->cset][j][2 * i + 1];
a->accum[2 * i + 1] += a->fftout[k][2 * i + 0] * a->fmask[a->cset][j][2 * i + 1] + a->fftout[k][2 * i + 1] * a->fmask[a->cset][j][2 * i + 0];
accum[2 * i + 0] += fftout[k][2 * i + 0] * fmask[cset][j][2 * i + 0] - fftout[k][2 * i + 1] * fmask[cset][j][2 * i + 1];
accum[2 * i + 1] += fftout[k][2 * i + 0] * fmask[cset][j][2 * i + 1] + fftout[k][2 * i + 1] * fmask[cset][j][2 * i + 0];
}
k = (k + a->idxmask) & a->idxmask;
k = (k + idxmask) & idxmask;
}
a->buffidx = (a->buffidx + 1) & a->idxmask;
fftwf_execute (a->crev);
std::copy(&(a->fftin[2 * a->size]), &(a->fftin[2 * a->size]) + a->size * 2, a->fftin);
buffidx = (buffidx + 1) & idxmask;
fftwf_execute (crev);
std::copy(&(fftin[2 * size]), &(fftin[2 * size]) + size * 2, fftin.begin());
}
void FIRCORE::setBuffers_fircore (FIRCORE *a, float* in, float* out)
void FIRCORE::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
deplan_fircore (a);
plan_fircore (a);
calc_fircore (a, 1);
in = _in;
out = _out;
deplan();
plan();
calc(1);
}
void FIRCORE::setSize_fircore (FIRCORE *a, int size)
void FIRCORE::setSize(int _size)
{
a->size = size;
deplan_fircore (a);
plan_fircore (a);
calc_fircore (a, 1);
size = _size;
deplan();
plan();
calc(1);
}
void FIRCORE::setImpulse_fircore (FIRCORE *a, float* impulse, int update)
void FIRCORE::setImpulse(float* _impulse, int _update)
{
std::copy(impulse, impulse + a->nc * 2, a->impulse);
calc_fircore (a, update);
std::copy(_impulse, _impulse + nc * 2, impulse.begin());
calc(_update);
}
void FIRCORE::setNc_fircore (FIRCORE *a, int nc, float* impulse)
void FIRCORE::setNc(int _nc, float* _impulse)
{
// because of FFT planning, this will probably cause a glitch in audio if done during dataflow
deplan_fircore (a);
delete[] (a->impulse);
delete[] (a->imp);
a->nc = nc;
plan_fircore (a);
a->imp = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex));
a->impulse = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex));
std::copy(impulse, impulse + a->nc * 2, a->impulse);
calc_fircore (a, 1);
deplan();
nc = _nc;
plan();
imp.resize(nc * 2);
impulse.resize(nc * 2);
std::copy(_impulse, _impulse + nc * 2, impulse.begin());
calc(1);
}
void FIRCORE::setMp_fircore (FIRCORE *a, int mp)
void FIRCORE::setMp(int _mp)
{
a->mp = mp;
calc_fircore (a, 1);
mp = _mp;
calc(1);
}
void FIRCORE::setUpdate_fircore (FIRCORE *a)
void FIRCORE::setUpdate()
{
if (a->masks_ready)
if (masks_ready)
{
a->cset = 1 - a->cset;
a->masks_ready = 0;
cset = 1 - cset;
masks_ready = 0;
}
}

View File

@ -34,6 +34,9 @@ warren@wpratt.com
#ifndef wdsp_fircore_h
#define wdsp_fircore_h
#include <array>
#include <vector>
#include "fftw3.h"
#include "export.h"
@ -46,39 +49,49 @@ public:
float* in; // input buffer
float* out; // output buffer, can be same as input
int nc; // number of filter coefficients, power of two, >= size
float* impulse; // impulse response of filter
float* imp;
std::vector<float> impulse; // impulse response of filter
std::vector<float> imp;
int nfor; // number of buffers in delay line
float* fftin; // fft input buffer
float*** fmask; // frequency domain masks
float** fftout; // fftout delay line
float* accum; // frequency domain accumulator
std::vector<float> fftin; // fft input buffer
std::array<std::vector<std::vector<float>>, 2> fmask; // frequency domain masks
std::vector<std::vector<float>> fftout; // fftout delay line
std::vector<float> accum; // frequency domain accumulator
int buffidx; // fft out buffer index
int idxmask; // mask for index computations
float* maskgen; // input for mask generation FFT
fftwf_plan* pcfor; // array of forward FFT plans
std::vector<float> maskgen; // input for mask generation FFT
std::vector<fftwf_plan> pcfor; // array of forward FFT plans
fftwf_plan crev; // reverse fft plan
fftwf_plan** maskplan; // plans for frequency domain masks
std::array<std::vector<fftwf_plan>, 2> maskplan; // plans for frequency domain masks
int cset;
int mp;
int masks_ready;
static FIRCORE* create_fircore (int size, float* in, float* out,
int nc, int mp, float* impulse);
static void xfircore (FIRCORE *a);
static void destroy_fircore (FIRCORE *a);
static void flush_fircore (FIRCORE *a);
static void setBuffers_fircore (FIRCORE *a, float* in, float* out);
static void setSize_fircore (FIRCORE *a, int size);
static void setImpulse_fircore (FIRCORE *a, float* impulse, int update);
static void setNc_fircore (FIRCORE *a, int nc, float* impulse);
static void setMp_fircore (FIRCORE *a, int mp);
static void setUpdate_fircore (FIRCORE *a);
FIRCORE(
int size,
float* in,
float* out,
int nc,
int mp,
float*
impulse
);
FIRCORE(const FIRCORE&) = delete;
FIRCORE& operator=(const FIRCORE& other) = delete;
~FIRCORE();
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSize(int size);
void setImpulse(float* impulse, int update);
void setNc(int nc, float* impulse);
void setMp(int mp);
void setUpdate();
private:
static void plan_fircore (FIRCORE *a);
static void calc_fircore (FIRCORE *a, int flip);
static void deplan_fircore (FIRCORE *a);
void plan();
void calc(int flip);
void deplan();
};
} // namespace WDSP

View File

@ -158,26 +158,26 @@ FMD::FMD(
0,
0
);
pde = FIRCORE::create_fircore (size, audio.data(), out, nc_de, mp_de, impulse);
pde = new FIRCORE(size, audio.data(), out, nc_de, mp_de, impulse);
delete[] impulse;
// audio filter
impulse = FIR::fir_bandpass(nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
paud = FIRCORE::create_fircore (size, out, out, nc_aud, mp_aud, impulse);
paud = new FIRCORE(size, out, out, nc_aud, mp_aud, impulse);
delete[] impulse;
}
FMD::~FMD()
{
FIRCORE::destroy_fircore (paud);
FIRCORE::destroy_fircore (pde);
delete (paud);
delete (pde);
decalc();
}
void FMD::flush()
{
std::fill(audio.begin(), audio.end(), 0);
FIRCORE::flush_fircore (pde);
FIRCORE::flush_fircore (paud);
pde->flush();
paud->flush();
phs = 0.0;
fil_out = 0.0;
omega = 0.0;
@ -219,9 +219,9 @@ void FMD::execute()
audio[2 * i + 1] = audio[2 * i + 0];
}
// de-emphasis
FIRCORE::xfircore (pde);
pde->execute();
// audio filter
FIRCORE::xfircore (paud);
paud->execute();
// CTCSS Removal
sntch->execute();
if (lim_run)
@ -241,8 +241,8 @@ void FMD::setBuffers(float* _in, float* _out)
in = _in;
out = _out;
calc();
FIRCORE::setBuffers_fircore (pde, audio.data(), out);
FIRCORE::setBuffers_fircore (paud, out, out);
pde->setBuffers(audio.data(), out);
paud->setBuffers(out, out);
plim->setBuffers(out, out);
}
@ -265,11 +265,11 @@ void FMD::setSamplerate(int _rate)
0,
0
);
FIRCORE::setImpulse_fircore (pde, impulse, 1);
pde->setImpulse(impulse, 1);
delete[] impulse;
// audio filter
impulse = FIR::fir_bandpass(nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
FIRCORE::setImpulse_fircore (paud, impulse, 1);
paud->setImpulse(impulse, 1);
delete[] impulse;
plim->setSamplerate((int) rate);
}
@ -282,7 +282,7 @@ void FMD::setSize(int _size)
calc();
audio.resize(size * 2);
// de-emphasis filter
FIRCORE::destroy_fircore (pde);
delete (pde);
impulse = FCurve::fc_impulse (
nc_de,
(float) f_low,
@ -295,12 +295,12 @@ void FMD::setSize(int _size)
0,
0
);
pde = FIRCORE::create_fircore (size, audio.data(), out, nc_de, mp_de, impulse);
pde = new FIRCORE(size, audio.data(), out, nc_de, mp_de, impulse);
delete[] impulse;
// audio filter
FIRCORE::destroy_fircore (paud);
delete (paud);
impulse = FIR::fir_bandpass(nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
paud = FIRCORE::create_fircore (size, out, out, nc_aud, mp_aud, impulse);
paud = new FIRCORE(size, out, out, nc_aud, mp_aud, impulse);
delete[] impulse;
plim->setSize(size);
}
@ -348,7 +348,7 @@ void FMD::setNCde(int nc)
0,
0
);
FIRCORE::setNc_fircore (pde, nc_de, impulse);
pde->setNc(nc_de, impulse);
delete[] impulse;
}
}
@ -358,7 +358,7 @@ void FMD::setMPde(int mp)
if (mp_de != mp)
{
mp_de = mp;
FIRCORE::setMp_fircore (pde, mp_de);
pde->setMp(mp_de);
}
}
@ -370,7 +370,7 @@ void FMD::setNCaud(int nc)
{
nc_aud = nc;
impulse = FIR::fir_bandpass(nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
FIRCORE::setNc_fircore (paud, nc_aud, impulse);
paud->setNc(nc_aud, impulse);
delete[] impulse;
}
}
@ -380,7 +380,7 @@ void FMD::setMPaud(int mp)
if (mp_aud != mp)
{
mp_aud = mp;
FIRCORE::setMp_fircore (paud, mp_aud);
paud->setMp(mp_aud);
}
}
@ -424,11 +424,11 @@ void FMD::setAFFilter(double low, double high)
0,
0
);
FIRCORE::setImpulse_fircore (pde, impulse, 1);
pde->setImpulse(impulse, 1);
delete[] impulse;
// audio filter
impulse = FIR::fir_bandpass (nc_aud, 0.8 * f_low, 1.1 * f_high, rate, 0, 1, afgain / (2.0 * size));
FIRCORE::setImpulse_fircore (paud, impulse, 1);
paud->setImpulse(impulse, 1);
delete[] impulse;
}
}

View File

@ -33,130 +33,128 @@ warren@wpratt.com
namespace WDSP {
void FMMOD::calc_fmmod (FMMOD *a)
void FMMOD::calc()
{
// ctcss gen
a->tscale = 1.0 / (1.0 + a->ctcss_level);
a->tphase = 0.0;
a->tdelta = TWOPI * a->ctcss_freq / a->samplerate;
tscale = 1.0 / (1.0 + ctcss_level);
tphase = 0.0;
tdelta = TWOPI * ctcss_freq / samplerate;
// mod
a->sphase = 0.0;
a->sdelta = TWOPI * a->deviation / a->samplerate;
sphase = 0.0;
sdelta = TWOPI * deviation / samplerate;
// bandpass
a->bp_fc = a->deviation + a->f_high;
bp_fc = deviation + f_high;
}
FMMOD* FMMOD::create_fmmod (
int run,
int size,
float* in,
float* out,
int rate,
float dev,
float f_low,
float f_high,
int ctcss_run,
float ctcss_level,
float ctcss_freq,
int bp_run,
int nc,
int mp
FMMOD::FMMOD(
int _run,
int _size,
float* _in,
float* _out,
int _rate,
double _dev,
double _f_low,
double _f_high,
int _ctcss_run,
double _ctcss_level,
double _ctcss_freq,
int _bp_run,
int _nc,
int _mp
)
{
FMMOD *a = new FMMOD;
float* impulse;
a->run = run;
a->size = size;
a->in = in;
a->out = out;
a->samplerate = (float)rate;
a->deviation = dev;
a->f_low = f_low;
a->f_high = f_high;
a->ctcss_run = ctcss_run;
a->ctcss_level = ctcss_level;
a->ctcss_freq = ctcss_freq;
a->bp_run = bp_run;
a->nc = nc;
a->mp = mp;
calc_fmmod (a);
impulse = FIR::fir_bandpass(a->nc, -a->bp_fc, +a->bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
a->p = FIRCORE::create_fircore (a->size, a->out, a->out, a->nc, a->mp, impulse);
delete[] (impulse);
return a;
run = _run;
size = _size;
in = _in;
out = _out;
samplerate = (float) _rate;
deviation = _dev;
f_low = _f_low;
f_high = _f_high;
ctcss_run = _ctcss_run;
ctcss_level = _ctcss_level;
ctcss_freq = _ctcss_freq;
bp_run = _bp_run;
nc = _nc;
mp = _mp;
calc();
impulse = FIR::fir_bandpass(nc, -bp_fc, +bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p = new FIRCORE(size, out, out, nc, mp, impulse);
delete[] impulse;
}
void FMMOD::destroy_fmmod (FMMOD *a)
FMMOD::~FMMOD()
{
FIRCORE::destroy_fircore (a->p);
delete (a);
delete p;
}
void FMMOD::flush_fmmod (FMMOD *a)
void FMMOD::flush()
{
a->tphase = 0.0;
a->sphase = 0.0;
tphase = 0.0;
sphase = 0.0;
}
void FMMOD::xfmmod (FMMOD *a)
void FMMOD::execute()
{
int i;
float dp, magdp, peak;
if (a->run)
double dp;
double magdp;
double peak;
if (run)
{
peak = 0.0;
for (i = 0; i < a->size; i++)
for (int i = 0; i < size; i++)
{
if (a->ctcss_run)
if (ctcss_run)
{
a->tphase += a->tdelta;
if (a->tphase >= TWOPI) a->tphase -= TWOPI;
a->out[2 * i + 0] = a->tscale * (a->in[2 * i + 0] + a->ctcss_level * cos (a->tphase));
tphase += tdelta;
if (tphase >= TWOPI) tphase -= TWOPI;
out[2 * i + 0] = (float) (tscale * (in[2 * i + 0] + ctcss_level * cos (tphase)));
}
dp = a->out[2 * i + 0] * a->sdelta;
a->sphase += dp;
if (a->sphase >= TWOPI) a->sphase -= TWOPI;
if (a->sphase < 0.0 ) a->sphase += TWOPI;
a->out[2 * i + 0] = 0.7071 * cos (a->sphase);
a->out[2 * i + 1] = 0.7071 * sin (a->sphase);
dp = out[2 * i + 0] * sdelta;
sphase += dp;
if (sphase >= TWOPI) sphase -= TWOPI;
if (sphase < 0.0 ) sphase += TWOPI;
out[2 * i + 0] = (float) (0.7071 * cos (sphase));
out[2 * i + 1] = (float) (0.7071 * sin (sphase));
if ((magdp = dp) < 0.0) magdp = - magdp;
if (magdp > peak) peak = magdp;
}
//print_deviation ("peakdev.txt", peak, a->samplerate);
if (a->bp_run)
FIRCORE::xfircore (a->p);
if (bp_run)
p->execute();
}
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (in != out)
std::copy( in, in + size * 2, out);
}
void FMMOD::setBuffers_fmmod (FMMOD *a, float* in, float* out)
void FMMOD::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
calc_fmmod (a);
FIRCORE::setBuffers_fircore (a->p, a->out, a->out);
in = _in;
out = _out;
calc();
p->setBuffers(out, out);
}
void FMMOD::setSamplerate_fmmod (FMMOD *a, int rate)
void FMMOD::setSamplerate(int _rate)
{
float* impulse;
a->samplerate = rate;
calc_fmmod (a);
impulse = FIR::fir_bandpass(a->nc, -a->bp_fc, +a->bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
samplerate = _rate;
calc();
impulse = FIR::fir_bandpass(nc, -bp_fc, +bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p->setImpulse(impulse, 1);
delete[] impulse;
}
void FMMOD::setSize_fmmod (FMMOD *a, int size)
void FMMOD::setSize(int _size)
{
float* impulse;
a->size = size;
calc_fmmod (a);
FIRCORE::setSize_fircore (a->p, a->size);
impulse = FIR::fir_bandpass(a->nc, -a->bp_fc, +a->bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
size = _size;
calc();
p->setSize(size);
impulse = FIR::fir_bandpass(nc, -bp_fc, +bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p->setImpulse(impulse, 1);
delete[] impulse;
}
/********************************************************************************************************
@ -165,76 +163,67 @@ void FMMOD::setSize_fmmod (FMMOD *a, int size)
* *
********************************************************************************************************/
void FMMOD::SetFMDeviation (TXA& txa, float deviation)
void FMMOD::setDeviation(float _deviation)
{
FMMOD *a = txa.fmmod;
float bp_fc = a->f_high + deviation;
float* impulse = FIR::fir_bandpass (a->nc, -bp_fc, +bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
FIRCORE::setImpulse_fircore (a->p, impulse, 0);
delete[] (impulse);
a->deviation = deviation;
double _bp_fc = f_high + _deviation;
float* impulse = FIR::fir_bandpass (nc, -_bp_fc, +_bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p->setImpulse(impulse, 0);
delete[] impulse;
deviation = _deviation;
// mod
a->sphase = 0.0;
a->sdelta = TWOPI * a->deviation / a->samplerate;
sphase = 0.0;
sdelta = TWOPI * deviation / samplerate;
// bandpass
a->bp_fc = bp_fc;
FIRCORE::setUpdate_fircore (a->p);
bp_fc = _bp_fc;
p->setUpdate();
}
void FMMOD::SetCTCSSFreq (TXA& txa, float freq)
void FMMOD::setCTCSSFreq (float _freq)
{
FMMOD *a;
a = txa.fmmod;
a->ctcss_freq = freq;
a->tphase = 0.0;
a->tdelta = TWOPI * a->ctcss_freq / a->samplerate;
ctcss_freq = _freq;
tphase = 0.0;
tdelta = TWOPI * ctcss_freq / samplerate;
}
void FMMOD::SetCTCSSRun (TXA& txa, int run)
void FMMOD::setCTCSSRun (int _run)
{
txa.fmmod->ctcss_run = run;
ctcss_run = _run;
}
void FMMOD::SetFMNC (TXA& txa, int nc)
void FMMOD::setNC(int _nc)
{
FMMOD *a;
float* impulse;
a = txa.fmmod;
if (a->nc != nc)
if (nc != _nc)
{
a->nc = nc;
impulse = FIR::fir_bandpass (a->nc, -a->bp_fc, +a->bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
FIRCORE::setNc_fircore (a->p, a->nc, impulse);
delete[] (impulse);
nc = _nc;
impulse = FIR::fir_bandpass (nc, -bp_fc, +bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p->setNc(nc, impulse);
delete[] impulse;
}
}
void FMMOD::SetFMMP (TXA& txa, int mp)
void FMMOD::setMP(int _mp)
{
FMMOD *a;
a = txa.fmmod;
if (a->mp != mp)
if (mp != _mp)
{
a->mp = mp;
FIRCORE::setMp_fircore (a->p, a->mp);
mp = _mp;
p->setMp(mp);
}
}
void FMMOD::SetFMAFFreqs (TXA& txa, float low, float high)
void FMMOD::setAFFreqs(float _low, float _high)
{
FMMOD *a;
float* impulse;
a = txa.fmmod;
if (a->f_low != low || a->f_high != high)
if (f_low != _low || f_high != _high)
{
a->f_low = low;
a->f_high = high;
a->bp_fc = a->deviation + a->f_high;
impulse = FIR::fir_bandpass (a->nc, -a->bp_fc, +a->bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
f_low = _low;
f_high = _high;
bp_fc = deviation + f_high;
impulse = FIR::fir_bandpass (nc, -bp_fc, +bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p->setImpulse(impulse, 1);
delete[] impulse;
}
}

View File

@ -42,59 +42,62 @@ public:
int size;
float* in;
float* out;
float samplerate;
float deviation;
float f_low;
float f_high;
double samplerate;
double deviation;
double f_low;
double f_high;
int ctcss_run;
float ctcss_level;
float ctcss_freq;
double ctcss_level;
double ctcss_freq;
// for ctcss gen
float tscale;
float tphase;
float tdelta;
double tscale;
double tphase;
double tdelta;
// mod
float sphase;
float sdelta;
double sphase;
double sdelta;
// bandpass
int bp_run;
float bp_fc;
double bp_fc;
int nc;
int mp;
FIRCORE *p;
static FMMOD* create_fmmod (
FMMOD(
int run,
int size,
float* in,
float* out,
int rate,
float dev,
float f_low,
float f_high,
double dev,
double f_low,
double f_high,
int ctcss_run,
float ctcss_level,
float ctcss_freq,
double ctcss_level,
double ctcss_freq,
int bp_run,
int nc,
int mp
);
static void destroy_fmmod (FMMOD *a);
static void flush_fmmod (FMMOD *a);
static void xfmmod (FMMOD *a);
static void setBuffers_fmmod (FMMOD *a, float* in, float* out);
static void setSamplerate_fmmod (FMMOD *a, int rate);
static void setSize_fmmod (FMMOD *a, int size);
FMMOD(const FMMOD&) = delete;
FMMOD& operator=(const FMMOD& other) = delete;
~FMMOD();
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
static void SetFMDeviation (TXA& txa, float deviation);
static void SetCTCSSFreq (TXA& txa, float freq);
static void SetCTCSSRun (TXA& txa, int run);
static void SetFMMP (TXA& txa, int mp);
static void SetFMNC (TXA& txa, int nc);
static void SetFMAFFreqs (TXA& txa, float low, float high);
void setDeviation(float deviation);
void setCTCSSFreq(float freq);
void setCTCSSRun(int run);
void setMP(int mp);
void setNC(int nc);
void setAFFreqs(float low, float high);
private:
static void calc_fmmod (FMMOD *a);
void calc();
};
} // namespace WDSP

View File

@ -49,7 +49,7 @@ void FMSQ::calc()
G[2] = 3.0;
G[3] = (float) (+20.0 * log10(20000.0 / *pllpole));
impulse = EQP::eq_impulse (nc, 3, F.data(), G.data(), rate, 1.0 / (2.0 * size), 0, 0);
p = FIRCORE::create_fircore (size, trigger, noise.data(), nc, mp, impulse);
p = new FIRCORE(size, trigger, noise.data(), nc, mp, impulse);
delete[] impulse;
// noise averaging
avm = exp(-1.0 / (rate * avtau));
@ -89,7 +89,7 @@ void FMSQ::calc()
void FMSQ::decalc()
{
FIRCORE::destroy_fircore (p);
delete (p);
}
FMSQ::FMSQ(
@ -143,7 +143,7 @@ FMSQ::~FMSQ()
void FMSQ::flush()
{
FIRCORE::flush_fircore (p);
p->flush();
avnoise = 100.0;
longnoise = 1.0;
state = FMSQState::MUTED;
@ -157,7 +157,7 @@ void FMSQ::execute()
{
double _noise;
double lnlimit;
FIRCORE::xfircore (p);
p->execute();
for (int i = 0; i < size; i++)
{
@ -250,7 +250,7 @@ void FMSQ::setBuffers(float* in, float* out, float* trig)
insig = in;
outsig = out;
trigger = trig;
FIRCORE::setBuffers_fircore (p, trigger, noise.data());
p->setBuffers(trigger, noise.data());
}
void FMSQ::setSamplerate(int _rate)
@ -292,7 +292,7 @@ void FMSQ::setNC(int _nc)
{
nc = _nc;
impulse = EQP::eq_impulse (nc, 3, F.data(), G.data(), rate, 1.0 / (2.0 * size), 0, 0);
FIRCORE::setNc_fircore (p, nc, impulse);
p->setNc(nc, impulse);
delete[] impulse;
}
}
@ -302,7 +302,7 @@ void FMSQ::setMP(int _mp)
if (mp != _mp)
{
mp = _mp;
FIRCORE::setMp_fircore (p, mp);
p->setMp(mp);
}
}

View File

@ -35,15 +35,15 @@ namespace WDSP {
void ICFIR::calc_icfir (ICFIR *a)
{
float* impulse;
a->scale = 1.0 / (float)(2 * a->size);
impulse = icfir_impulse (a->nc, a->DD, a->R, a->Pairs, a->runrate, a->cicrate, a->cutoff, a->xtype, a->xbw, 1, a->scale, a->wintype);
a->p = FIRCORE::create_fircore (a->size, a->in, a->out, a->nc, a->mp, impulse);
a->scale = 1.0f / (float)(2 * a->size);
impulse = icfir_impulse (a->nc, a->DD, a->R, a->Pairs, (float) a->runrate, (float) a->cicrate, a->cutoff, a->xtype, a->xbw, 1, a->scale, a->wintype);
a->p = new FIRCORE(a->size, a->in, a->out, a->nc, a->mp, impulse);
delete[] (impulse);
}
void ICFIR::decalc_icfir (ICFIR *a)
{
FIRCORE::destroy_fircore (a->p);
delete (a->p);
}
ICFIR* ICFIR::create_icfir (
@ -105,13 +105,13 @@ void ICFIR::destroy_icfir (ICFIR *a)
void ICFIR::flush_icfir (ICFIR *a)
{
FIRCORE::flush_fircore (a->p);
a->p->flush();
}
void ICFIR::xicfir (ICFIR *a)
{
if (a->run)
FIRCORE::xfircore (a->p);
a->p->execute();
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
}
@ -171,16 +171,21 @@ float* ICFIR::icfir_impulse (
// xbw: transition bandwidth for raised cosine
// rtype: 0 for real output, 1 for complex output
// scale: scale factor to be applied to the output
int i, j;
float tmp, local_scale, ri, mag, fn;
int i;
int j;
float tmp;
float local_scale;
float ri;
float mag;
float fn;
float* impulse;
float* A = new float[N]; // (float *) malloc0 (N * sizeof (float));
auto* A = new float[N];
float ft = cutoff / cicrate; // normalized cutoff frequency
int u_samps = (N + 1) / 2; // number of unique samples, OK for odd or even N
int c_samps = (int)(cutoff / runrate * N) + (N + 1) / 2 - N / 2; // number of unique samples within bandpass, OK for odd or even N
int x_samps = (int)(xbw / runrate * N); // number of unique samples in transition region, OK for odd or even N
float offset = 0.5 - 0.5 * (float)((N + 1) / 2 - N / 2); // sample offset from center, OK for odd or even N
float* xistion = new float[x_samps + 1]; // (float *) malloc0 ((x_samps + 1) * sizeof (float));
auto x_samps = (int)(xbw / runrate * N); // number of unique samples in transition region, OK for odd or even N
float offset = 0.5f - 0.5f * (float)((N + 1) / 2 - N / 2); // sample offset from center, OK for odd or even N
auto* xistion = new float[x_samps + 1];
float delta = PI / (float)x_samps;
float L = cicrate / runrate;
float phs = 0.0;
@ -235,24 +240,10 @@ float* ICFIR::icfir_impulse (
for (i = u_samps, j = 1; i < N; i++, j++)
A[i] = A[u_samps - j];
impulse = FIR::fir_fsamp (N, A, rtype, 1.0, wintype);
// print_impulse ("icfirImpulse.txt", N, impulse, 1, 0);
delete[] (A);
delete[] xistion;
return impulse;
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
//PORT void
//SetTXAICFIRRun (int channel, int run)
//{
// EnterCriticalSection(&ch[channel].csDSP);
// txa[channel].icfir.p->run = run;
// LeaveCriticalSection(&ch[channel].csDSP);
//}
} // namespace WDSP

View File

@ -34,278 +34,174 @@ warren@wpratt.com
namespace WDSP {
void IQC::size_iqc (IQC *a)
void IQC::size_iqc()
{
int i;
a->t = new float[a->ints + 1]; // (float *) malloc0 ((a->ints + 1) * sizeof(float));
for (i = 0; i <= a->ints; i++)
a->t[i] = (float)i / (float)a->ints;
t.resize(ints + 1);
for (i = 0; i <= ints; i++)
t[i] = (double)i / (double)ints;
for (i = 0; i < 2; i++)
{
a->cm[i] = new float[a->ints * 4]; // (float *) malloc0 (a->ints * 4 * sizeof(float));
a->cc[i] = new float[a->ints * 4]; // (float *) malloc0 (a->ints * 4 * sizeof(float));
a->cs[i] = new float[a->ints * 4]; // (float *) malloc0 (a->ints * 4 * sizeof(float));
cm[i].resize(ints * 4);
cc[i].resize(ints * 4);
cs[i].resize(ints * 4);
}
a->dog.cpi = new int[a->ints]; // (int *) malloc0 (a->ints * sizeof (int));
a->dog.count = 0;
a->dog.full_ints = 0;
dog.cpi.resize(ints);
dog.count = 0;
dog.full_ints = 0;
}
void IQC::desize_iqc (IQC *a)
void IQC::calc()
{
int i;
delete[] (a->dog.cpi);
for (i = 0; i < 2; i++)
{
delete[] (a->cm[i]);
delete[] (a->cc[i]);
delete[] (a->cs[i]);
}
delete[] (a->t);
}
void IQC::calc_iqc (IQC *a)
{
int i;
float delta, theta;
a->cset = 0;
a->count = 0;
a->state = 0;
a->busy = 0;
a->ntup = (int)(a->tup * a->rate);
a->cup = new float[a->ntup + 1]; // (float *) malloc0 ((a->ntup + 1) * sizeof (float));
delta = PI / (float)a->ntup;
double delta;
double theta;
cset = 0;
count = 0;
state = IQCSTATE::RUN;
busy = 0;
ntup = (int)(tup * rate);
cup.resize(ntup + 1);
delta = PI / (double)ntup;
theta = 0.0;
for (i = 0; i <= a->ntup; i++)
for (int i = 0; i <= ntup; i++)
{
a->cup[i] = 0.5 * (1.0 - cos (theta));
cup[i] = 0.5 * (1.0 - cos (theta));
theta += delta;
}
size_iqc (a);
size_iqc();
}
void IQC::decalc_iqc (IQC *a)
IQC::IQC(
int _run,
int _size,
float* _in,
float* _out,
double _rate,
int _ints,
double _tup,
int _spi
) :
run(_run),
size(_size),
in(_in),
out(_out),
rate(_rate),
ints(_ints),
tup(_tup)
{
desize_iqc (a);
delete[] (a->cup);
dog.spi = _spi;
calc();
}
IQC* IQC::create_iqc (int run, int size, float* in, float* out, float rate, int ints, float tup, int spi)
void IQC::flush()
{
IQC *a = new IQC;
a->run = run;
a->size = size;
a->in = in;
a->out = out;
a->rate = rate;
a->ints = ints;
a->tup = tup;
a->dog.spi = spi;
calc_iqc (a);
return a;
// Nothing to do
}
void IQC::destroy_iqc (IQC *a)
void IQC::execute()
{
decalc_iqc (a);
delete (a);
}
void IQC::flush_iqc (IQC *)
{
}
enum _iqcstate
{
RUN = 0,
BEGIN,
SWAP,
END,
DONE
};
void IQC::xiqc (IQC *a)
{
if (a->run == 1)
if (run == 1)
{
int i, k, cset, mset;
float I, Q, env, dx, ym, yc, ys, PRE0, PRE1;
for (i = 0; i < a->size; i++)
int k;
int icset;
int mset;
double I;
double Q;
double env;
double dx;
double ym;
double yc;
double ys;
double PRE0;
double PRE1;
for (int i = 0; i < size; i++)
{
I = a->in[2 * i + 0];
Q = a->in[2 * i + 1];
I = in[2 * i + 0];
Q = in[2 * i + 1];
env = sqrt (I * I + Q * Q);
if ((k = (int)(env * a->ints)) > a->ints - 1) k = a->ints - 1;
dx = env - a->t[k];
cset = a->cset;
ym = a->cm[cset][4 * k + 0] + dx * (a->cm[cset][4 * k + 1] + dx * (a->cm[cset][4 * k + 2] + dx * a->cm[cset][4 * k + 3]));
yc = a->cc[cset][4 * k + 0] + dx * (a->cc[cset][4 * k + 1] + dx * (a->cc[cset][4 * k + 2] + dx * a->cc[cset][4 * k + 3]));
ys = a->cs[cset][4 * k + 0] + dx * (a->cs[cset][4 * k + 1] + dx * (a->cs[cset][4 * k + 2] + dx * a->cs[cset][4 * k + 3]));
if ((k = (int)(env * ints)) > ints - 1) k = ints - 1;
dx = env - t[k];
icset = cset;
ym = cm[icset][4 * k + 0] + dx * (cm[icset][4 * k + 1] + dx * (cm[icset][4 * k + 2] + dx * cm[icset][4 * k + 3]));
yc = cc[icset][4 * k + 0] + dx * (cc[icset][4 * k + 1] + dx * (cc[icset][4 * k + 2] + dx * cc[icset][4 * k + 3]));
ys = cs[icset][4 * k + 0] + dx * (cs[icset][4 * k + 1] + dx * (cs[icset][4 * k + 2] + dx * cs[icset][4 * k + 3]));
PRE0 = ym * (I * yc - Q * ys);
PRE1 = ym * (I * ys + Q * yc);
switch (a->state)
switch (state)
{
case RUN:
if (a->dog.cpi[k] != a->dog.spi)
if (++a->dog.cpi[k] == a->dog.spi)
a->dog.full_ints++;
if (a->dog.full_ints == a->ints)
case IQCSTATE::RUN:
if ((dog.cpi[k] != dog.spi) && (++dog.cpi[k] == dog.spi))
dog.full_ints++;
if (dog.full_ints == ints)
{
++a->dog.count;
a->dog.full_ints = 0;
memset (a->dog.cpi, 0, a->ints * sizeof (int));
++dog.count;
dog.full_ints = 0;
std::fill(dog.cpi.begin(), dog.cpi.end(), 0);
}
break;
case BEGIN:
PRE0 = (1.0 - a->cup[a->count]) * I + a->cup[a->count] * PRE0;
PRE1 = (1.0 - a->cup[a->count]) * Q + a->cup[a->count] * PRE1;
if (a->count++ == a->ntup)
case IQCSTATE::BEGIN:
PRE0 = (1.0 - cup[count]) * I + cup[count] * PRE0;
PRE1 = (1.0 - cup[count]) * Q + cup[count] * PRE1;
if (count++ == ntup)
{
a->state = RUN;
a->count = 0;
a->busy = 0; // InterlockedBitTestAndReset (&a->busy, 0);
state = IQCSTATE::RUN;
count = 0;
busy = 0;
}
break;
case SWAP:
case IQCSTATE::SWAP:
mset = 1 - cset;
ym = a->cm[mset][4 * k + 0] + dx * (a->cm[mset][4 * k + 1] + dx * (a->cm[mset][4 * k + 2] + dx * a->cm[mset][4 * k + 3]));
yc = a->cc[mset][4 * k + 0] + dx * (a->cc[mset][4 * k + 1] + dx * (a->cc[mset][4 * k + 2] + dx * a->cc[mset][4 * k + 3]));
ys = a->cs[mset][4 * k + 0] + dx * (a->cs[mset][4 * k + 1] + dx * (a->cs[mset][4 * k + 2] + dx * a->cs[mset][4 * k + 3]));
PRE0 = (1.0 - a->cup[a->count]) * ym * (I * yc - Q * ys) + a->cup[a->count] * PRE0;
PRE1 = (1.0 - a->cup[a->count]) * ym * (I * ys + Q * yc) + a->cup[a->count] * PRE1;
if (a->count++ == a->ntup)
ym = cm[mset][4 * k + 0] + dx * (cm[mset][4 * k + 1] + dx * (cm[mset][4 * k + 2] + dx * cm[mset][4 * k + 3]));
yc = cc[mset][4 * k + 0] + dx * (cc[mset][4 * k + 1] + dx * (cc[mset][4 * k + 2] + dx * cc[mset][4 * k + 3]));
ys = cs[mset][4 * k + 0] + dx * (cs[mset][4 * k + 1] + dx * (cs[mset][4 * k + 2] + dx * cs[mset][4 * k + 3]));
PRE0 = (1.0 - cup[count]) * ym * (I * yc - Q * ys) + cup[count] * PRE0;
PRE1 = (1.0 - cup[count]) * ym * (I * ys + Q * yc) + cup[count] * PRE1;
if (count++ == ntup)
{
a->state = RUN;
a->count = 0;
a->busy = 0; // InterlockedBitTestAndReset (&a->busy, 0);
state = IQCSTATE::RUN;
count = 0;
busy = 0;
}
break;
case END:
PRE0 = (1.0 - a->cup[a->count]) * PRE0 + a->cup[a->count] * I;
PRE1 = (1.0 - a->cup[a->count]) * PRE1 + a->cup[a->count] * Q;
if (a->count++ == a->ntup)
case IQCSTATE::END:
PRE0 = (1.0 - cup[count]) * PRE0 + cup[count] * I;
PRE1 = (1.0 - cup[count]) * PRE1 + cup[count] * Q;
if (count++ == ntup)
{
a->state = DONE;
a->count = 0;
a->busy = 0; // InterlockedBitTestAndReset (&a->busy, 0);
state = IQCSTATE::DONE;
count = 0;
busy = 0;
}
break;
case DONE:
case IQCSTATE::DONE:
PRE0 = I;
PRE1 = Q;
break;
}
a->out[2 * i + 0] = PRE0;
a->out[2 * i + 1] = PRE1;
// print_iqc_values("iqc.txt", a->state, env, PRE0, PRE1, ym, yc, ys, 1.1);
out[2 * i + 0] = (float) PRE0;
out[2 * i + 1] = (float) PRE1;
}
}
else if (a->out != a->in)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (out != in)
std::copy( in, in + size * 2, out);
}
void IQC::setBuffers_iqc (IQC *a, float* in, float* out)
void IQC::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
in = _in;
out = _out;
}
void IQC::setSamplerate_iqc (IQC *a, int rate)
void IQC::setSamplerate(int _rate)
{
decalc_iqc (a);
a->rate = rate;
calc_iqc (a);
rate = _rate;
calc();
}
void IQC::setSize_iqc (IQC *a, int size)
void IQC::setSize(int _size)
{
a->size = size;
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void IQC::GetiqcValues (TXA& txa, float* cm, float* cc, float* cs)
{
IQC *a;
a = txa.iqc.p0;
memcpy (cm, a->cm[a->cset], a->ints * 4 * sizeof (float));
memcpy (cc, a->cc[a->cset], a->ints * 4 * sizeof (float));
memcpy (cs, a->cs[a->cset], a->ints * 4 * sizeof (float));
}
void IQC::SetiqcValues (TXA& txa, float* cm, float* cc, float* cs)
{
IQC *a;
a = txa.iqc.p0;
a->cset = 1 - a->cset;
memcpy (a->cm[a->cset], cm, a->ints * 4 * sizeof (float));
memcpy (a->cc[a->cset], cc, a->ints * 4 * sizeof (float));
memcpy (a->cs[a->cset], cs, a->ints * 4 * sizeof (float));
a->state = RUN;
}
void IQC::SetiqcSwap (TXA& txa, float* cm, float* cc, float* cs)
{
IQC *a = txa.iqc.p1;
a->cset = 1 - a->cset;
memcpy (a->cm[a->cset], cm, a->ints * 4 * sizeof (float));
memcpy (a->cc[a->cset], cc, a->ints * 4 * sizeof (float));
memcpy (a->cs[a->cset], cs, a->ints * 4 * sizeof (float));
a->busy = 1; // InterlockedBitTestAndSet (&a->busy, 0);
a->state = SWAP;
a->count = 0;
// while (_InterlockedAnd (&a->busy, 1)) Sleep(1);
while (a->busy == 1) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
void IQC::SetiqcStart (TXA& txa, float* cm, float* cc, float* cs)
{
IQC *a = txa.iqc.p1;
a->cset = 0;
memcpy (a->cm[a->cset], cm, a->ints * 4 * sizeof (float));
memcpy (a->cc[a->cset], cc, a->ints * 4 * sizeof (float));
memcpy (a->cs[a->cset], cs, a->ints * 4 * sizeof (float));
a->busy = 1; // InterlockedBitTestAndSet (&a->busy, 0);
a->state = BEGIN;
a->count = 0;
txa.iqc.p1->run = 1; //InterlockedBitTestAndSet (&txa.iqc.p1->run, 0);
// while (_InterlockedAnd (&a->busy, 1)) Sleep(1);
while (a->busy == 1) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
void IQC::SetiqcEnd (TXA& txa)
{
IQC *a = txa.iqc.p1;
a->busy = 1; // InterlockedBitTestAndSet (&a->busy, 0);
a->state = END;
a->count = 0;
// while (_InterlockedAnd (&a->busy, 1)) Sleep(1);
while (a->busy == 1) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
txa.iqc.p1->run = 0; //InterlockedBitTestAndReset (&txa.iqc.p1->run, 0);
}
void IQC::GetiqcDogCount (TXA& txa, int* count)
{
IQC *a = txa.iqc.p1;
*count = a->dog.count;
}
void IQC::SetiqcDogCount (TXA& txa, int count)
{
IQC *a = txa.iqc.p1;
a->dog.count = count;
size = _size;
}
} // namespace WDSP

View File

@ -28,6 +28,9 @@ warren@wpratt.com
#ifndef wdsp_iqc_h
#define wdsp_iqc_h
#include <array>
#include <vector>
#include "export.h"
namespace WDSP {
@ -37,52 +40,63 @@ class TXA;
class WDSP_API IQC
{
public:
enum class IQCSTATE
{
RUN = 0,
BEGIN,
SWAP,
END,
DONE
};
long run;
long busy;
int size;
float* in;
float* out;
float rate;
double rate;
int ints;
float* t;
std::vector<double> t;
int cset;
float* cm[2];
float* cc[2];
float* cs[2];
float tup;
float* cup;
std::array<std::vector<double>, 2> cm;
std::array<std::vector<double>, 2> cc;
std::array<std::vector<double>, 2> cs;
double tup;
std::vector<double> cup;
int count;
int ntup;
int state;
IQCSTATE state;
struct
{
int spi;
int* cpi;
std::vector<int> cpi;
int full_ints;
int count;
} dog;
static IQC* create_iqc (int run, int size, float* in, float* out, float rate, int ints, float tup, int spi);
static void destroy_iqc (IQC *a);
static void flush_iqc (IQC *a);
static void xiqc (IQC *a);
static void setBuffers_iqc (IQC *a, float* in, float* out);
static void setSamplerate_iqc (IQC *a, int rate);
static void setSize_iqc (IQC *a, int size);
// TXA Properties
static void GetiqcValues (TXA& txa, float* cm, float* cc, float* cs);
static void SetiqcValues (TXA& txa, float* cm, float* cc, float* cs);
static void SetiqcSwap (TXA& txa, float* cm, float* cc, float* cs);
static void SetiqcStart (TXA& txa, float* cm, float* cc, float* cs);
static void SetiqcEnd (TXA& txa);
static void GetiqcDogCount (TXA& txa, int* count);
static void SetiqcDogCount (TXA& txa, int count);
IQC(
int run,
int size,
float* in,
float* out,
double rate,
int ints,
double tup,
int spi
);
IQC(const IQC&) = delete;
IQC& operator=(const IQC& other) = delete;
~IQC() = default;
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
private:
static void size_iqc (IQC *a);
static void desize_iqc (IQC *a);
static void calc_iqc (IQC *a);
static void decalc_iqc (IQC *a);
void size_iqc();
void calc();
};
} // namespace WDSP

View File

@ -333,7 +333,7 @@ void NBP::calc_lightweight()
gain / (float)(2 * size),
wintype
);
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
// print_impulse ("nbp.txt", size + 1, impulse, 1, 0);
delete[] impulse;
}
@ -437,25 +437,25 @@ NBP::NBP(
bplow.resize(maxpb);
bphigh.resize(maxpb);
calc_impulse ();
fircore = FIRCORE::create_fircore (size, in, out, nc, mp, impulse);
fircore = new FIRCORE(size, in, out, nc, mp, impulse);
// print_impulse ("nbp.txt", size + 1, impulse, 1, 0);
delete[]impulse;
}
NBP::~NBP()
{
FIRCORE::destroy_fircore (fircore);
delete (fircore);
}
void NBP::flush()
{
FIRCORE::flush_fircore (fircore);
fircore->flush();
}
void NBP::execute (int pos)
{
if (run && pos == position)
FIRCORE::xfircore (fircore);
fircore->execute();
else if (in != out)
std::copy( in, in + size * 2, out);
}
@ -464,14 +464,14 @@ void NBP::setBuffers(float* _in, float* _out)
{
in = _in;
out = _out;
FIRCORE::setBuffers_fircore (fircore, in, out);
fircore->setBuffers(in, out);
}
void NBP::setSamplerate(int _rate)
{
rate = _rate;
calc_impulse ();
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
@ -479,22 +479,22 @@ void NBP::setSize(int _size)
{
// NOTE: 'size' must be <= 'nc'
size = _size;
FIRCORE::setSize_fircore (fircore, size);
fircore->setSize(size);
calc_impulse ();
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
void NBP::setNc()
{
calc_impulse();
FIRCORE::setNc_fircore (fircore, nc, impulse);
fircore->setNc(nc, impulse);
delete[] impulse;
}
void NBP::setMp()
{
FIRCORE::setMp_fircore (fircore, mp);
fircore->setMp(mp);
}
/********************************************************************************************************
@ -517,7 +517,7 @@ void NBP::SetFreqs(double _flow, double _fhigh)
flow = _flow;
fhigh = _fhigh;
calc_impulse();
FIRCORE::setImpulse_fircore (fircore, impulse, 1);
fircore->setImpulse(impulse, 1);
delete[] impulse;
}
}

View File

@ -75,12 +75,18 @@ public:
int out_idx; // ring buffer position from which delayed samples are pulled
double backmult; // multiplier for waveform averaging
double ombackmult; // multiplier for waveform averaging
double I1, Q1;
double I2, Q2;
double I, Q;
double Ilast, Qlast;
double deltaI, deltaQ;
double Inext, Qnext;
double I1;
double Q1;
double I2;
double Q2;
double I;
double Q;
double Ilast;
double Qlast;
double deltaI;
double deltaQ;
double Inext;
double Qnext;
int overflow;
NOB(

View File

@ -35,122 +35,91 @@ warren@wpratt.com
namespace WDSP {
void OSCTRL::calc_osctrl (OSCTRL *a)
void OSCTRL::calc()
{
a->pn = (int)((0.3 / a->bw) * a->rate + 0.5);
if ((a->pn & 1) == 0) a->pn += 1;
if (a->pn < 3) a->pn = 3;
a->dl_len = a->pn >> 1;
a->dl = new float[a->pn * 2]; // (float *) malloc0 (a->pn * sizeof (complex));
a->dlenv = new float[a->pn]; // (float *) malloc0 (a->pn * sizeof (float));
a->in_idx = 0;
a->out_idx = a->in_idx + a->dl_len;
a->max_env = 0.0;
pn = (int)((0.3 / bw) * rate + 0.5);
if ((pn & 1) == 0) pn += 1;
if (pn < 3) pn = 3;
dl_len = pn >> 1;
dl.resize(pn * 2);
dlenv.resize(pn);
in_idx = 0;
out_idx = in_idx + dl_len;
max_env = 0.0;
}
void OSCTRL::decalc_osctrl (OSCTRL *a)
OSCTRL::OSCTRL(
int _run,
int _size,
float* _inbuff,
float* _outbuff,
int _rate,
double _osgain
) :
run(_run),
size(_size),
inbuff(_inbuff),
outbuff(_outbuff),
rate(_rate),
osgain(_osgain)
{
delete[] (a->dlenv);
delete[] (a->dl);
bw = 3000.0;
calc();
}
OSCTRL* OSCTRL::create_osctrl (
int run,
int size,
float* inbuff,
float* outbuff,
int rate,
float osgain
)
void OSCTRL::flush()
{
OSCTRL *a = new OSCTRL;
a->run = run;
a->size = size;
a->inbuff = inbuff;
a->outbuff = outbuff;
a->rate = rate;
a->osgain = osgain;
a->bw = 3000.0;
calc_osctrl (a);
return a;
std::fill(dl.begin(), dl.end(), 0);
std::fill(dlenv.begin(), dlenv.end(), 0);
}
void OSCTRL::destroy_osctrl (OSCTRL *a)
void OSCTRL::execute()
{
decalc_osctrl (a);
delete (a);
}
void OSCTRL::flush_osctrl (OSCTRL *a)
{
std::fill(a->dl, a->dl + a->dl_len * 2, 0);
std::fill(a->dlenv, a->dlenv + a->pn, 0);
}
void OSCTRL::xosctrl (OSCTRL *a)
{
if (a->run)
if (run)
{
int i, j;
float divisor;
for (i = 0; i < a->size; i++)
double divisor;
for (int i = 0; i < size; i++)
{
a->dl[2 * a->in_idx + 0] = a->inbuff[2 * i + 0]; // put sample in delay line
a->dl[2 * a->in_idx + 1] = a->inbuff[2 * i + 1];
a->env_out = a->dlenv[a->in_idx]; // take env out of delay line
a->dlenv[a->in_idx] = sqrt (a->inbuff[2 * i + 0] * a->inbuff[2 * i + 0] // put env in delay line
+ a->inbuff[2 * i + 1] * a->inbuff[2 * i + 1]);
if (a->dlenv[a->in_idx] > a->max_env) a->max_env = a->dlenv[a->in_idx];
if (a->env_out >= a->max_env && a->env_out > 0.0) // run the buffer
dl[2 * in_idx + 0] = inbuff[2 * i + 0]; // put sample in delay line
dl[2 * in_idx + 1] = inbuff[2 * i + 1];
env_out = dlenv[in_idx]; // take env out of delay line
dlenv[in_idx] = sqrt (inbuff[2 * i + 0] * inbuff[2 * i + 0] // put env in delay line
+ inbuff[2 * i + 1] * inbuff[2 * i + 1]);
if (dlenv[in_idx] > max_env) max_env = dlenv[in_idx];
if (env_out >= max_env && env_out > 0.0) // run the buffer
{
a->max_env = 0.0;
for (j = 0; j < a->pn; j++)
if (a->dlenv[j] > a->max_env) a->max_env = a->dlenv[j];
max_env = 0.0;
for (int j = 0; j < pn; j++)
if (dlenv[j] > max_env) max_env = dlenv[j];
}
if (a->max_env > 1.0) divisor = 1.0 + a->osgain * (a->max_env - 1.0);
if (max_env > 1.0) divisor = 1.0 + osgain * (max_env - 1.0);
else divisor = 1.0;
a->outbuff[2 * i + 0] = a->dl[2 * a->out_idx + 0] / divisor; // output sample
a->outbuff[2 * i + 1] = a->dl[2 * a->out_idx + 1] / divisor;
if (--a->in_idx < 0) a->in_idx += a->pn;
if (--a->out_idx < 0) a->out_idx += a->pn;
outbuff[2 * i + 0] = (float) (dl[2 * out_idx + 0] / divisor); // output sample
outbuff[2 * i + 1] = (float) (dl[2 * out_idx + 1] / divisor);
if (--in_idx < 0) in_idx += pn;
if (--out_idx < 0) out_idx += pn;
}
}
else if (a->inbuff != a->outbuff)
std::copy(a->inbuff, a->inbuff + a->size * 2, a->outbuff);
else if (inbuff != outbuff)
std::copy(inbuff, inbuff + size * 2, outbuff);
}
void OSCTRL::setBuffers_osctrl (OSCTRL *a, float* in, float* out)
void OSCTRL::setBuffers(float* _in, float* _out)
{
a->inbuff = in;
a->outbuff = out;
inbuff = _in;
outbuff = _out;
}
void OSCTRL::setSamplerate_osctrl (OSCTRL *a, int rate)
void OSCTRL::setSamplerate(int _rate)
{
decalc_osctrl (a);
a->rate = rate;
calc_osctrl (a);
rate = _rate;
calc();
}
void OSCTRL::setSize_osctrl (OSCTRL *a, int size)
void OSCTRL::setSize(int _size)
{
a->size = size;
flush_osctrl (a);
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void OSCTRL::SetosctrlRun (TXA& txa, int run)
{
if (txa.osctrl->run != run)
{
txa.osctrl->run = run;
txa.setupBPFilters();
}
size = _size;
flush();
}
} // namespace WDSP

View File

@ -32,6 +32,8 @@ warren@wpratt.com
#ifndef wdsp_osctrl_h
#define wdsp_osctrl_h
#include <vector>
#include "export.h"
namespace WDSP {
@ -46,37 +48,37 @@ public:
float *inbuff; // input buffer
float *outbuff; // output buffer
int rate; // sample rate
float osgain; // gain applied to overshoot "clippings"
float bw; // bandwidth
double osgain; // gain applied to overshoot "clippings"
double bw; // bandwidth
int pn; // "peak stretcher" window, samples
int dl_len; // delay line length, samples
float* dl; // delay line for complex samples
float* dlenv; // delay line for envelope values
std::vector<double> dl; // delay line for complex samples
std::vector<double> dlenv; // delay line for envelope values
int in_idx; // input index for dl
int out_idx; // output index for dl
float max_env; // maximum env value in env delay line
float env_out;
double max_env; // maximum env value in env delay line
double env_out;
static void xosctrl (OSCTRL *a);
static OSCTRL* create_osctrl (
OSCTRL(
int run,
int size,
float* inbuff,
float* outbuff,
int rate,
float osgain
double osgain
);
static void destroy_osctrl (OSCTRL *a);
static void flush_osctrl (OSCTRL *a);
static void setBuffers_osctrl (OSCTRL *a, float* in, float* out);
static void setSamplerate_osctrl (OSCTRL *a, int rate);
static void setSize_osctrl (OSCTRL *a, int size);
// TXA Properties
static void SetosctrlRun (TXA& txa, int run);
OSCTRL(const OSCTRL&) = delete;
OSCTRL& operator=(const OSCTRL& other) = delete;
~OSCTRL() = default;
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
private:
static void calc_osctrl (OSCTRL *a);
static void decalc_osctrl (OSCTRL *a);
void calc();
};
} // namespace WDSP

View File

@ -31,162 +31,141 @@ warren@wpratt.com
namespace WDSP {
enum _USLEW
void USLEW::calc()
{
BEGIN,
WAIT,
UP,
ON
};
void USLEW::calc_uslew (USLEW *a)
{
int i;
float delta, theta;
a->runmode = 0;
a->state = BEGIN;
a->count = 0;
a->ndelup = (int)(a->tdelay * a->rate);
a->ntup = (int)(a->tupslew * a->rate);
a->cup = new float[a->ntup + 1]; // (float *) malloc0 ((a->ntup + 1) * sizeof (float));
delta = PI / (float)a->ntup;
double delta;
double theta;
runmode = 0;
state = _USLEW::BEGIN;
count = 0;
ndelup = (int)(tdelay * rate);
ntup = (int)(tupslew * rate);
cup.resize(ntup + 1);
delta = PI / (float)ntup;
theta = 0.0;
for (i = 0; i <= a->ntup; i++)
for (int i = 0; i <= ntup; i++)
{
a->cup[i] = 0.5 * (1.0 - cos (theta));
cup[i] = 0.5 * (1.0 - cos (theta));
theta += delta;
}
*a->ch_upslew &= ~((long)1); // InterlockedBitTestAndReset (a->ch_upslew, 0);
*ch_upslew &= ~((long)1);
}
void USLEW::decalc_uslew (USLEW *a)
USLEW::USLEW(
long *_ch_upslew,
int _size,
float* _in,
float* _out,
double _rate,
double _tdelay,
double _tupslew
) :
ch_upslew(_ch_upslew),
size(_size),
in(_in),
out(_out),
rate(_rate),
tdelay(_tdelay),
tupslew(_tupslew)
{
delete[] (a->cup);
calc();
}
USLEW* USLEW::create_uslew (
TXA *txa,
long *ch_upslew,
int size,
float* in,
float* out,
float rate,
float tdelay,
float tupslew
)
void USLEW::flush()
{
USLEW *a = new USLEW;
a->txa = txa;
a->ch_upslew = ch_upslew;
a->size = size;
a->in = in;
a->out = out;
a->rate = rate;
a->tdelay = tdelay;
a->tupslew = tupslew;
calc_uslew (a);
return a;
state = _USLEW::BEGIN;
runmode = 0;
*ch_upslew &= ~1L;
}
void USLEW::destroy_uslew (USLEW *a)
void USLEW::execute (int check)
{
decalc_uslew (a);
delete (a);
}
if (!runmode && check)
runmode = 1;
void USLEW::flush_uslew (USLEW *a)
{
a->state = BEGIN;
a->runmode = 0;
*a->ch_upslew &= ~1L; //InterlockedBitTestAndReset (a->ch_upslew, 0);
}
void USLEW::xuslew (USLEW *a)
{
if (!a->runmode && a->txa->uslewCheck())
a->runmode = 1;
long upslew = *a->ch_upslew;
*a->ch_upslew = 1L;
if (a->runmode && upslew) //_InterlockedAnd (a->ch_upslew, 1))
long upslew = *ch_upslew;
*ch_upslew = 1L;
if (runmode && upslew) //_InterlockedAnd (ch_upslew, 1))
{
int i;
float I, Q;
for (i = 0; i < a->size; i++)
double I;
double Q;
for (int i = 0; i < size; i++)
{
I = a->in[2 * i + 0];
Q = a->in[2 * i + 1];
switch (a->state)
I = in[2 * i + 0];
Q = in[2 * i + 1];
switch (state)
{
case BEGIN:
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
case _USLEW::BEGIN:
out[2 * i + 0] = 0.0;
out[2 * i + 1] = 0.0;
if ((I != 0.0) || (Q != 0.0))
{
if (a->ndelup > 0)
if (ndelup > 0)
{
a->state = WAIT;
a->count = a->ndelup;
state = _USLEW::WAIT;
count = ndelup;
}
else if (a->ntup > 0)
else if (ntup > 0)
{
a->state = UP;
a->count = a->ntup;
state = _USLEW::UP;
count = ntup;
}
else
a->state = ON;
state = _USLEW::ON;
}
break;
case WAIT:
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
if (a->count-- == 0)
case _USLEW::WAIT:
out[2 * i + 0] = 0.0;
out[2 * i + 1] = 0.0;
if (count-- == 0)
{
if (a->ntup > 0)
if (ntup > 0)
{
a->state = UP;
a->count = a->ntup;
state = _USLEW::UP;
count = ntup;
}
else
a->state = ON;
state = _USLEW::ON;
}
break;
case UP:
a->out[2 * i + 0] = I * a->cup[a->ntup - a->count];
a->out[2 * i + 1] = Q * a->cup[a->ntup - a->count];
if (a->count-- == 0)
a->state = ON;
case _USLEW::UP:
out[2 * i + 0] = (float) (I * cup[ntup - count]);
out[2 * i + 1] = (float) (Q * cup[ntup - count]);
if (count-- == 0)
state = _USLEW::ON;
break;
case ON:
a->out[2 * i + 0] = I;
a->out[2 * i + 1] = Q;
*a->ch_upslew &= ~((long)1); // InterlockedBitTestAndReset (a->ch_upslew, 0);
a->runmode = 0;
case _USLEW::ON:
out[2 * i + 0] = (float) I;
out[2 * i + 1] = (float) Q;
*ch_upslew &= ~((long)1);
runmode = 0;
break;
default:
break;
}
}
}
else if (a->out != a->in)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (out != in)
std::copy( in, in + size * 2, out);
}
void USLEW::setBuffers_uslew (USLEW *a, float* in, float* out)
void USLEW::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
in = _in;
out = _out;
}
void USLEW::setSamplerate_uslew (USLEW *a, int rate)
void USLEW::setSamplerate(int _rate)
{
decalc_uslew (a);
a->rate = rate;
calc_uslew (a);
decalc();
rate = _rate;
calc();
}
void USLEW::setSize_uslew (USLEW *a, int size)
void USLEW::setSize(int _size)
{
a->size = size;
flush_uslew (a);
size = _size;
flush();
}
/********************************************************************************************************
@ -195,13 +174,17 @@ void USLEW::setSize_uslew (USLEW *a, int size)
* *
********************************************************************************************************/
void USLEW::SetuSlewTime (TXA& txa, float time)
void USLEW::setuSlewTime(double _time)
{
// NOTE: 'time' is in seconds
USLEW *a = txa.uslew;
decalc_uslew (a);
a->tupslew = time;
calc_uslew (a);
decalc();
tupslew = _time;
calc();
}
void USLEW::setRun(int run)
{
runmode = run;
}
} // namespace WDSP

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_slew_h
#define wdsp_slew_h
#include <vector>
#include "export.h"
namespace WDSP {
@ -37,42 +39,53 @@ class TXA;
class WDSP_API USLEW
{
public:
TXA *txa;
enum class _USLEW
{
BEGIN,
WAIT,
UP,
ON
};
long *ch_upslew;
int size;
float* in;
float* out;
float rate;
float tdelay;
float tupslew;
double rate;
double tdelay;
double tupslew;
int runmode;
int state;
_USLEW state;
int count;
int ndelup;
int ntup;
float* cup;
std::vector<double> cup;
static USLEW* create_uslew (
TXA *txa,
USLEW(
long *ch_upslew,
int size, float* in,
int size,
float* in,
float* out,
float rate,
float tdelay,
float tupslew
double rate,
double tdelay,
double tupslew
);
static void destroy_uslew (USLEW *a);
static void flush_uslew (USLEW *a);
static void xuslew (USLEW *a);
static void setBuffers_uslew (USLEW *a, float* in, float* out);
static void setSamplerate_uslew (USLEW *a, int rate);
static void setSize_uslew (USLEW *a, int size);
USLEW(const USLEW&) = delete;
USLEW& operator=(const USLEW& other) = delete;
~USLEW() = default;
void flush();
void execute (int check);
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
static void SetuSlewTime (TXA& txa, float time);
void setuSlewTime(double time);
void setRun(int run);
private:
static void calc_uslew (USLEW *a);
static void decalc_uslew (USLEW *a);
void calc();
void decalc();
};
} // namespace WDSP